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Attack–defense Trees

Modeling security scenarios

Attack–defense tree (ADTree) [JLC’14]

Tree-like representation of an attack–defense scenario depicting:
How to attack a system
How to protect against an attack

Extend the industrially recognized model of attack trees [Schneier’99]

Integrate

Intuitive representation features [IJSSE’12, ICISC’12]
Formal analysis techniques [GameSec’10, SIIS’11, JLC’14]
Software application ADTool [QEST’13]
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Attack–defense Trees

Example: ADTree for infecting a computer

infect computer

virus on system

e-mail with attachment USB stick antivirus

install antivirus run antivirus

fake antivirus

execute virus
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Attack–defense Trees

Propositional semantics for ADTrees [SIIS’11]

B – the set of non-refined nodes of ADTree t

x ∈ {0, 1}B encodes whether actions from B succeed or not
Action A ∈ B succeeds if x(A) = 1
Action A ∈ B does not succeed if x(A) = 0

Boolean function ft for t

ft : {0, 1}B → {0, 1} associates a Boolean value ft(x) ∈ {0, 1}
with each vector x ∈ {0, 1}B

x is called an attack vector if ft(x) = 1
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Attack–defense Trees

ADTrees as Boolean functions

Domain of ft is composed of the non-refined nodes of t

Non-refined OR AND Countermeasure

A

t

t' t''

t

t' t''

t'

t''

ft(A) = A ft = ft′ ∨ ft′′ ft = ft′ ∧ ft′′ ft = ft′ ∧ ¬ft′′
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Attack–defense Trees

Example: Boolean function for infecting a computer

infect computer

virus on system

e-mail with attachment USB stick antivirus

install antivirus run antivirus

fake antivirus

execute virus

ft =
(

(XEA ∨ XUS) ∧ ¬
(
XIA ∧ (XRA ∧ ¬XFA)

))
∧ XEV
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Attack–defense Trees

Example: attack vector

infect computer
true

virus on system
true

e-mail with attachment
true

USB stick
false

antivirus
false

install antivirus
true

run antivirus
false

fake antivirus
false

execute virus
true

ft =
(

(XEA ∨ XUS) ∧ ¬
(
XIA ∧ (XRA ∧ ¬XFA)

))
∧ XEV

attack vector 1 0 1 0 0 1
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Attack–defense Trees

Importance of probabilities

Knowing the probabilities of particular attacks allow us to

Identify the most vulnerable components
Determine the strategic points
Decide which protective measures to implement
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Attack–defense Trees

Bottom-up evaluation of probability on ADTrees [ICISC’12]

Probability of a
disjunctive subtree

Probability of a
conjunctive subtree

Probability of a
countered subtree

attack

x y

attack

x y

x

y

x + y − xy xy x(1− y)

Similarly for subtrees rooted in a defense node
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Attack–defense Trees

Example: probability for infecting a computer

infect computer
0.669375

virus on system
0.74375

e-mail with attachment
0.5

USB stick
0.75

antivirus
0.15000000000000002

install antivirus
0.8

run antivirus
0.25

fake antivirus
0.25

execute virus
0.9
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Attack–defense Trees

Limitations

The bottom-up procedure does not take dependencies between
actions into account.

However, in practice
Installing and running an antivirus
Distributing and executing a virus

are not independent actions.

Thus, the standard bottom-up evaluation is not suitable for probabilistic
assessment of attack–defense trees.
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Attack–defense Trees

Challenges

1 How to design the appropriate formalism?

2 How to ensure that calculations reflect the reality?

3 How to guarantee the efficiency of the evaluation?
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Probabilistic evaluation

Proposed Framework [INS’16]
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Probabilistic evaluation

Modeling probability of dependent actions

Bayesian network
A directed, acyclic graph that reflects the conditional interdependencies
between variables associated with the nodes of the network

Dependent variables Conditional probability table for Y

X Y

p(Y = 1|X = 1) = 0.7
p(Y = 1|X = 0) = 0.2
p(Y = 0|X = 1) = 0.3
p(Y = 0|X = 0) = 0.8
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Probabilistic evaluation

Constructing Bayesian network BNt for ADTree t

From an ADTree
t – ADTree
B – set of all non-refined nodes of t

To a Bayesian network
Elements of B are nodes of the Bayesian network BNt

Relations between actions are depicted by edges in BNt

Conditional probability tables quantify dependencies between actions
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Probabilistic evaluation

Example: BNt for infecting a computer ADTree

e-mail with attachment

execute virusfake antivirus

USB stick

p(XUS = 1|XFA = 1) = 0.4
p(XUS = 1|XFA = 0) = 0.5

p(XEV = 1|XEA = 1,XUS = 1) = 0.9
p(XEV = 1|XEA = 1,XUS = 0) = 0.2
p(XEV = 1|XEA = 0,XUS = 1) = 0.8
p(XEV = 1|XEA = 0,XUS = 0) = 0.1

p(XEA = 1|XFA = 1) = 0.9
p(XEA = 1|XFA = 0) = 0.5

p(XFA = 1) = 0.3

install antivirus run antivirus
p(XIA = 1) = 0.6 p(XRA = 1|XIA = 1) = 0.9

p(XRA = 1|XIA = 0) = 0.0
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Probabilistic evaluation

Joint probability distribution for network BNt

e-mail with attachment

execute virusfake antivirus

USB stick

install antivirus run antivirus

p(XEA,XUS,XIA,XRA,XFA,XEV) =

p(XEV|XEA,XUS)×p(XEA|XFA)×p(XUS|XFA)×p(XFA)×p(XRA|XIA)×p(XIA)
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Probabilistic evaluation

Propositional semantics using algebraic operations

Non-refined OR AND Countermeasure

A

t

t' t''

t

t' t''

t'

t''

ft(A) = A ft = ft′ ∨ ft′′ ft = ft′ ∧ ft′′ ft = ft′ ∧ ¬ft′′

idA max{ft′ , ft′′} ft′ × ft′′ ft′ × (1− ft′′)
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Probabilistic evaluation

Probability computation

x ∈ {0, 1}B – vector of successful/unsuccessful actions

Probability of attack vector x

ft(x)× p(x)

Probability related to ADTree t

P(t) =
∑

x∈{0,1}B
ft(x)× p(x)

Probability of the most probable attack vector

Pmax(t) = max
x∈{0,1}B

ft(x)× p(x)
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Probabilistic evaluation

Compatibility results

Theorem
Probability computations on propositionally equivalent ADTrees yield the
same result.

Observation
For ADTree t without dependent actions, P(t) coincides with the result
of the bottom-up computation.
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Efficiency considerations

Efficiency problems

P(t) =
∑

x∈{0,1}B
ft(x)× p(x) Pmax(t) = max

x∈{0,1}B
ft(x)× p(x)

The number of configurations x grows exponentially with the number
of involved actions. For large systems, it is therefore not feasible to

Enumerate all the values of ft
Enumerate all the values of the joint probability distribution for BNt
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Efficiency considerations

Local indicators

ft =
(

(XEA ∨ XUS)︸ ︷︷ ︸
Y1

∧¬
(
XIA ∧ (XRA ∧ ¬XFA)︸ ︷︷ ︸

Y2

)
︸ ︷︷ ︸

Y3

)

︸ ︷︷ ︸
Y4

∧ XEV

︸ ︷︷ ︸
Yt

φ1(Y1,XEA,XUS) = 1 exactly if Y1 = max{XEA,XUS}
φ2(Y2,XRA,XFA) = 1 exactly if Y2 = XRA × (1− XFA)

φ3(Y3,XIA,Y2) = 1 exactly if Y3 = XIA × Y2

φ4(Y4,Y1,Y3) = 1 exactly if Y4 = Y1 × (1− Y3)

φ5(Yt ,Y4,XEV) = 1 exactly if Yt = Y4 × XEV
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Efficiency considerations

Global indicator function φt for ADTree t

Domain of φt :
Non-refined nodes of t
Inner variables of all local indicators

Global indicator function φt = product of all local indicators φi

φt(

Y=inner variables︷ ︸︸ ︷
Y1,Y2,Y3,Y4,Yt ,

B=non-refined nodes︷ ︸︸ ︷
XEA,XUS,XIA,XRA,XFA,XEV) =

φ1(Y1,XEA,XUS)× φ2(Y2,XRA,XFA)× φ3(Y3,XIA,Y2)×
φ4(Y4,Y1,Y3)× φ5(Yt ,Y4,XEV)

Φt indicates valid assignments with respect to ft
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Efficiency considerations

Important property

Theorem
Consider an ADTree t over the set of non-refined nodes B and the global
indicator function φt with the set of inner variables Y.

∀x ∈ {0, 1}B ∃!y ∈ {0, 1}Y , such that φt(y, x) = 1

Corollary: ∀x ∈ {0, 1}B

max
y∈{0,1}Y

φt(y, x) =
∑

y∈{0,1}Y
φt(y, x) = 1

Barbara Kordy 28



Efficiency considerations

Filtering interesting assignments of φt

t

A B

φt(Yt = 1,XA = 1,XB = 1) = 1
φt(Yt = 1,XA = 1,XB = 0) = 1
φt(Yt = 1,XA = 0,XB = 1) = 1
φt(Yt = 0,XA = 0,XB = 0) = 1

We are only interested in assignments such that φt = 1 and Yt = 1

Yt × φt(y, x)
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Efficiency considerations

Expressing ft with its global indicator

∀x ∈ {0, 1}B : max
y∈{0,1}Y

φt(y, x) =
∑

y∈{0,1}Y
φt(y, x) = 1

∀x ∈ {0, 1}B

max
y∈{0,1}Y

(
Yt × φt(y, x)

)
=

∑
y∈{0,1}Y

(
Yt × φt(y, x)

)
=

= ft(x) =

{
1, if x is an attack vector
0, otherwise
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Efficiency considerations

Factorized form for probability formulas

Probability of attack vector x

ft(x)× p(x) = max
y∈{0,1}Y

(
Yt × φt(y, x)× p(x)

)

Probability related to ADTree t

P(t) =
∑

x∈{0,1}B
ft(x)× p(x) =

∑
(y,x)∈{0,1}Y∪B

(
Yt × φt(y, x)× p(x)

)

Probability of the most probable attack vector

Pmax(t) = max
x∈{0,1}B

ft(x)× p(x) = max
(y,x)∈{0,1}Y∪B

(
Yt × φt(y, x)× p(x)

)
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Efficiency considerations

Our framework in the context of semiring theory

Inference problem over the arithmetic semiring 〈R,+,×〉

P(t) =
∑

(y,x)∈{0,1}Y∪B

(
Yt × φt(y, x)× p(x)

)

Inference problem over the product t-norm semiring 〈[0, 1],max,×〉

Pmax(t) = max
(y,x)∈{0,1}Y∪B

(
Yt × φt(y, x)× p(x)

)
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Efficiency considerations

Local computation

Powerful local computation algorithms

Fusion
Variable elimination

}
smart distributivity

P(t) Complexity bound Using Nenok tool [IJAIT’10]

Direct computation 211 3.422sec

Using fusion 24 0.031sec

Complexity bounded by a structural parameter of the problem
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Wrap Up
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Wrap Up

Addressing challenges

1 How to design the appropriate formalism?

Used by industry, intuitive & well formalized
Security model and dependency network are kept separated

2 How to ensure that calculations reflect the reality?

Real-life data take dependencies into account
Complement ADTree with additional information

3 How to guarantee the efficiency of the evaluation?

Local computation algorithms
Existing software tools, well-known heuristics
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Wrap Up

Where to take it from here?

Find the best elimination sequence for Bayesian ADTrees
NP-complete in general
Prediction is possible for specific families of graphs

Extend to probability distributions
Probability dependent on time

Interface ADTool [QEST’13] with Nenok
Automated probability assessment of large scale scenarios
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Wrap Up

Take home message

Key to success

Appropriate technique

Components Attributes

Well-founded model

Syntax Semantics

Erroneous results

Understand theory
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