
Efficient Formally Secure Compilers
to a Tagged Architecture

Cătălin Hrițcu

Inria Paris

Prosecco team

1

5 year vision
ERC SECOMP: https://secure-compilation.github.io

https://secure-compilation.github.io/

Computers are insecure

• devastating low-level vulnerabilities

• teasing out 2 important security problems:

1. inherently insecure low-level languages

– memory unsafe: any buffer overflow can be catastrophic
allowing remote attackers to gain complete control

2. unsafe interoperability with lower-level code

– even code written in safer languages
has to interoperate with insecure low-level libraries

– unsafe interoperability: high-level safety guarantees lost

2

How did we get here?

• programming languages, compilers,
and hardware architectures

– designed in an era of scarce hardware resources

– too often trade off security for efficiency

• the world has changed (2017 vs 1972*)

– security matters, hardware resources abundant

– time to revisit some tradeoffs

3

* “...the number of UNIX installations has grown to 10, with more expected...”
-- Dennis Ritchie and Ken Thompson, June 1972

tpc’ tm3’

Key enabler: Micro-Policies

4

pc tpc

r0 tr0

r1 tr1

mem[0] tm0

“store r0 r1” tm1

mem[2] tm2

mem[3] tm3

tpc tr0 tr1 tm3 tm1

monitor
allow

tpc’ tm3’

tpc

tr0

tr1

tm1

store

software monitor’s decision is hardware cached

software-defined, hardware-accelerated, tag-based monitoring

disallow
policy violation stopped!

(e.g. out of bounds write)

tm3

tm3≠

tm3

=

• low level + fine grained: unbounded per-word
metadata, checked & propagated on each instruction

• flexible: tags and monitor defined by software

• efficient: software decisions hardware cached

• expressive: complex policies for secure compilation

• secure and simple enough to verify security in Coq

• real: FPGA implementation on top of RISC-V

5

Micro-policies are cool!

• information flow control (IFC)

• monitor self-protection

• protected compartments

• dynamic sealing

• heap memory safety

• code-data separation

• control-flow integrity (CFI)

• taint tracking

• ...

Expressiveness

6

Verified
(in Coq)

Evaluated
(<10% runtime overhead)

[Oakland’15]

[POPL’14]

[ASPLOS’15]

Way beyond MPX,
SGX, SSM, etc

• Formal methods & architecture & systems

• Current team:

– Inria Paris: Cătălin Hrițcu, Guglielmo
Fachini, Marco Stronati, Théo Laurent

– UPenn: André DeHon, Benjamin Pierce,
Arthur Azevedo de Amorim, Nick Roessler

– Portland State: Andrew Tolmach

– MIT: Howie Shrobe,
Stelios Sidiroglou-Douskos

– Industry: Draper Labs

• Spinoff of past project:
DARPA CRASH/SAFE (2011-2014)

Micro-Policies team

7

SECOMP grand challenge

Use micro-policies to build the first efficient formally

secure compilers for realistic programming languages

8

1. Provide secure semantics for low-level languages

– C with protected components and memory safety

2. Enforce secure interoperability with lower-level code

– ASM, C, and Low*

[= safe C subset embedded in F* for verification]

Secure Compilation

9

(safe)
high-level
attacker

low-level
attacker

source

target

compiler

Benefit: sound security reasoning in the source language
forget about compiler chain (linker, loader, runtime system)
forget that libraries are written in a lower-level language

secure

secure

program behavior

program behavior

compiler
correctness

(e.g. CompCert)

holy grail of preserving security all the way down

secure
compilation

component

component

not
enough

no extra powerprotected e.g. arbitrary
machine code

Our original secure compilation target:
fully abstract compilation

10

high-level
attacker

low-level
attacker

1st high-level
component

1st compiled
component

high-level
attacker

low-level
attacker

2nd high-level
component

2nd compiled
component

high-level
attacker

low-level
attacker

ᵼ

.

.

compiler compiler

Problems: (1) very hard to realisticallyachieve
(hopeless against timing side channels;
more realistic: preservation of noninterference)

(2) very difficult to prove ……

(preservation of observational equivalence)

Our new first target: robust compilation

• robust satisfaction preserved
(adversarial context)

• gives up on confidentiality
(relational/hyper properties)

– more robust to side channels

• conjectures:

– stronger than (compositional)
compiler correctness

– weaker than full abstraction +
compiler correctness

• less extensional than FA

11

high-level
attacker

low-level
attacker

high-level
component

compiled
component

high-level
attacker

breaking ˉ

low-level
attacker

breaking ˉ

.

.

compiler

trace properties ˉ

Advantages: easier to realistically achieve and prove
still useful: preservation of invariants and other integrity properties

SECOMP: achieving secure compilation at scale

12

miTLS*

CompSec+

KremSec

memory safe
C component

protecting component boundaries

legacy C
component

CompSec

ASM
component

Low* language
(safe C subset in F*)

C language
+ components
+ memory safety

ASM language
(RISC-V + micro-policies)

protecting higher-level abstractions

Protecting component boundaries

• Add mutually distrustful components to C

– interacting only via strictly enforced interfaces

• CompSec compiler chain (based on CompCert)

– propagate interface information to produced binary

• Micro-policy simultaneously enforcing
– component separation

– type-safe procedure call and return discipline

• Interesting attacker model

– mutual distrust, unsafe source language

13Ongoing work, started with Yannis Juglaret et al

ra

Protected components micro-policy

14

Jal r

...@Entry{ ,...}

...

...

...

Load ẘrm → ra

Jump ra

pc

memory

C1

C2

...

pc ra

r

rm

@n

@(n+1)

@Ret n

registers

Store ra → ẘrm

pc ...
@(n+1)

cross-component call
only allowed at Entry point &
only if from authorized caller

linear return capability
stack level

current color

changed color

increment

loads and stores to the same
component always allowed

@Ret n

pc ra rm
@(n+1)

invariant:
at most one
return capability
per call stack level

pc ra rm
@(n+1)

cross-component
return only allowed
via return capability

[Towards a Fully Abstract Compiler Using Micro-Policies, Juglaret et al, TR 2015]

Mutual-distrust attacker model

15

i1 i2 i3 i4 i5

C1 C2 C3 C4 C5↓ ↓ ↓ ↓ ↓

i1 i2 i3 i4 i5

C1 A2 C3 A4 A5

hɱigh-level attack from some fully defined A2, A4, A5

ᵙ ᵙ ᵙ

cᶅompromise scenarios s. sᶅcenario-indexed trace properties π.

[Beyond Good and Evil, Juglaret, Hritcu, et al, CSF’16]

(more interesting compared to vanilla FA or RC)

violates π(s)

violates π(s)

lɱow-level attack from compromised C2↓, C4↓, C5↓

C1 and C3 fully defined

Protecting higher-level abstractions

16

• Low*: enforcing specifications in C

– some can be turned into contracts, checked

dynamically; micro-policies can speed this up

• Limits of purely-dynamic enforcement

– functional purity, termination, relational reasoning

– push these limits further and

combine with static analysis

SECOMP focused on dynamic enforcement
but combining with static analysis can ...

• improve efficiency
– removing spurious dynamic checks

– e.g. turn off pointer checking for a statically memory
safe component that never sends or receives pointers

• improve transparency
– allowing more safe behaviors

– e.g. statically detect which copy of linear return
capability the code will use to return

– in this case unsound “static analysis” is fine

17

Verification and testing

• So far most secure compilation work on paper

– one can’t verify an interesting compiler on paper

• SECOMP uses proof assistants: Coq and F*

• Reduce effort

– more automation (e.g. based on SMT, like in F*)

– integrate testing and proving (QuickChick and Luck)

• Problem not just with scale of mechanization

– devising good proof techniques for secure
compilation is a hot research topic of it’s own

18

Remaining challenges for micro-policies

• Micro-policies for C

– needed for vertical compiler composition

– will put micro-policies in the hands of programmers

• Secure micro-policy composition

– micro-policies are interferent reference monitors

– one micro-policy’s behavior can break another’s guarantees

• e.g. composing anything with IFC can leak

19

SECOMP in a nutshell

• We need more secure languages, compilers, hardware

• Key enabler: micro-policies (software-hardware protection)

• Grand challenge: the first efficient formally secure compilers
for realistic programming languages (C and Low*)

• Answering challenging fundamental questions

– properties/attacker models, proof techniques

– secure composition, micro-policies for C

• Achieving strong security properties

+ testing and proving formally that this is the case

• Measuring & lowering the cost of secure compilation

• Most of this is vaporware at this point but ...

– building a community, looking for collaborators, and hiring

to make some of this real 20

BACKUP SLIDES

21

22

Collaborators & Community
• Core team at Inria Paris

– Marco Stronati (PostDoc), Guglielmo Fachini and Théo Laurent (Interns)

– Looking for excellent interns, students, researchers, and engineers

• Traditional collaborators from Micro-Policies project

– UPenn, MIT, Portland State, Draper Labs

• Other researchers working on secure compilation

– Deepak Garg (MPI-SWS), Frank Piessens (KU Leuven),
Amal Ahmed (Northeastern), Cedric Fournet & Nik Swamy (MSR), …

• Secure compilation meetings

– 1st at Inria Paris in Aug. 2016, 2nd at POPL in Jan. 2017, POPL workshop

– Upcoming: Dagstuhl seminar on Secure Compilation, May 2018

– build larger research community, identify open problems,

bring together communities (HW, systems, security, PL, verification, ...)

Broad view on secure compilation

• Different security goals / attacker models
– Fully abstract compilation and variants,

robust compilation, noninterference preservation, ...

• Different enforcement mechanisms
– reference monitors, secure hardware, static analysis,

software rewriting, randomization, ...

• Different proof techniques
– (bi)simulation, logical relations, multi-language

semantics, embedded interpreters, ...

23

