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Computers are insecure

• devastating low-level vulnerabilities

• teasing out 2 important security problems:

1. inherently insecure low-level languages

– memory unsafe: any buffer overflow can be catastrophic 
allowing remote attackers to gain complete control

2. unsafe interoperability with lower-level code

– even code written in safer languages
has to interoperate with insecure low-level libraries

– unsafe interoperability: high-level safety guarantees lost
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How did we get here?

• programming languages, compilers,
and hardware architectures

– designed in an era of scarce hardware resources

– too often trade off security for efficiency

• the world has changed (2017 vs 1972*)

– security matters, hardware resources abundant

– time to revisit some tradeoffs
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* “...the number of UNIX installations has grown to 10, with more expected...”
-- Dennis Ritchie and Ken Thompson, June 1972
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Key enabler: Micro-Policies
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• low level + fine grained: unbounded per-word 
metadata, checked & propagated on each instruction

• flexible: tags and monitor defined by software

• efficient: software decisions hardware cached

• expressive: complex policies for secure compilation

• secure and simple enough to verify security in Coq

• real: FPGA implementation on top of RISC-V
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Micro-policies are cool!



• information flow control (IFC)

• monitor self-protection

• protected compartments

• dynamic sealing

• heap memory safety

• code-data separation

• control-flow integrity (CFI)

• taint tracking

• ...

Expressiveness
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Verified
(in Coq)

Evaluated 
(<10% runtime overhead)

[Oakland’15]

[POPL’14]

[ASPLOS’15]

Way beyond MPX, 
SGX, SSM, etc



• Formal methods & architecture & systems

• Current team:

– Inria Paris: Cătălin Hrițcu, Guglielmo
Fachini, Marco Stronati, Théo Laurent

– UPenn: André DeHon, Benjamin Pierce, 
Arthur Azevedo de Amorim, Nick Roessler

– Portland State: Andrew Tolmach

– MIT: Howie Shrobe,
Stelios Sidiroglou-Douskos

– Industry: Draper Labs

• Spinoff of past project:
DARPA CRASH/SAFE (2011-2014)

Micro-Policies team
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SECOMP grand challenge

Use micro-policies to build the first efficient formally 

secure compilers for realistic programming languages

8

1. Provide secure semantics for low-level languages

– C with protected components and memory safety

2. Enforce secure interoperability with lower-level code

– ASM, C, and Low*

[= safe C subset embedded in F* for verification]



Secure Compilation
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Our original secure compilation target:
fully abstract compilation
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Problems: (1) very hard to realisticallyachieve
(hopeless against timing side channels;
more realistic: preservation of noninterference)

(2) very difficult to prove ……

(preservation of observational equivalence)



Our new first target: robust compilation

• robust satisfaction preserved 
(adversarial context)

• gives up on confidentiality 
(relational/hyper properties)

– more robust to side channels

• conjectures:

– stronger than (compositional) 
compiler correctness

– weaker than full abstraction + 
compiler correctness

• less extensional than FA

11

high-level
attacker

low-level
attacker

high-level 
component 

compiled
component

high-level
attacker

breaking ˉ

low-level
attacker

breaking ˉ

.

.

compiler

trace properties ˉ

Advantages: easier to realistically achieve and prove
still useful: preservation of invariants and other integrity properties



SECOMP: achieving secure compilation at scale
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Protecting component boundaries

• Add mutually distrustful components to C

– interacting only via strictly enforced interfaces

• CompSec compiler chain (based on CompCert)

– propagate interface information to produced binary

• Micro-policy simultaneously enforcing
– component separation

– type-safe procedure call and return discipline

• Interesting attacker model

– mutual distrust, unsafe source language

13Ongoing work, started with Yannis Juglaret et al
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Protected components micro-policy
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[Towards a Fully Abstract Compiler Using Micro-Policies, Juglaret et al, TR 2015]



Mutual-distrust attacker model
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cᶅompromise scenarios s. sᶅcenario-indexed trace properties π.

[Beyond Good and Evil, Juglaret, Hritcu, et al, CSF’16]

(more interesting compared to vanilla FA or RC)
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Protecting higher-level abstractions
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• Low*: enforcing specifications in C

– some can be turned into contracts, checked 

dynamically; micro-policies can speed this up

• Limits of purely-dynamic enforcement

– functional purity, termination, relational reasoning

– push these limits further and

combine with static analysis



SECOMP focused on dynamic enforcement
but combining with static analysis can ...

• improve efficiency
– removing spurious dynamic checks

– e.g. turn off pointer checking for a statically memory 
safe component that never sends or receives pointers

• improve transparency
– allowing more safe behaviors

– e.g. statically detect which copy of linear return 
capability the code will use to return

– in this case unsound “static analysis” is fine
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Verification and testing

• So far most secure compilation work on paper

– one can’t verify an interesting compiler on paper

• SECOMP uses proof assistants: Coq and F*

• Reduce effort

– more automation (e.g. based on SMT, like in F*)

– integrate testing and proving (QuickChick and Luck)

• Problem not just with scale of mechanization

– devising good proof techniques for secure 
compilation is a hot research topic of it’s own
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Remaining challenges for micro-policies

• Micro-policies for C

– needed for vertical compiler composition

– will put micro-policies in the hands of programmers

• Secure micro-policy composition

– micro-policies are interferent reference monitors

– one micro-policy’s behavior can break another’s guarantees

• e.g. composing anything with IFC can leak
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SECOMP in a nutshell

• We need more secure languages, compilers, hardware

• Key enabler: micro-policies (software-hardware protection)

• Grand challenge: the first efficient formally secure compilers
for realistic programming languages (C and Low*)

• Answering challenging fundamental questions

– properties/attacker models, proof techniques

– secure composition, micro-policies for C

• Achieving strong security properties

+ testing and proving formally that this is the case

• Measuring & lowering the cost of secure compilation

• Most of this is vaporware at this point but ... 

– building a community, looking for collaborators, and hiring

to make some of this real 20



BACKUP SLIDES
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Collaborators & Community
• Core team at Inria Paris

– Marco Stronati (PostDoc), Guglielmo Fachini and Théo Laurent (Interns)

– Looking for excellent interns, students, researchers, and engineers

• Traditional collaborators from Micro-Policies project

– UPenn, MIT, Portland State, Draper Labs

• Other researchers working on secure compilation

– Deepak Garg (MPI-SWS), Frank Piessens (KU Leuven),
Amal Ahmed (Northeastern), Cedric Fournet & Nik Swamy (MSR), …

• Secure compilation meetings

– 1st at Inria Paris in Aug. 2016, 2nd at POPL in Jan. 2017, POPL workshop

– Upcoming: Dagstuhl seminar on Secure Compilation, May 2018

– build larger research community, identify open problems,

bring together communities (HW, systems, security, PL, verification, ...)



Broad view on secure compilation

• Different security goals / attacker models
– Fully abstract compilation and variants,

robust compilation, noninterference preservation, ...

• Different enforcement mechanisms
– reference monitors, secure hardware, static analysis, 

software rewriting, randomization, ...

• Different proof techniques
– (bi)simulation, logical relations, multi-language 

semantics, embedded interpreters, ...
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