Practical Verifiable computing
exact linear algebra certificates

Jean-Guillaume Dumas
Delegating computation

• Cloud computing
 – Businesses buy computing power from a service provider
 • No need to provision and maintain hardware
 • Pay for what you need, scalability
 • Small devices outsourcing complex computing problems to larger servers

⇒ Issue: correctness of result?
We run clusters so you don't have to....

Google Cloud Platform

amazon web services

Microsoft Azure

ORACLE

grid engine

IBM Platform Computing
High-performance as a service

[http://www-03.ibm.com/systems/platformcomputing/products/hpc/]
Azure example fares

<table>
<thead>
<tr>
<th>Cores</th>
<th>RAM</th>
<th>Disk Sizes</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.75 GB</td>
<td>19 GB</td>
<td>$0.02/hour (~$15/month)</td>
</tr>
<tr>
<td>1</td>
<td>1.75 GB</td>
<td>224 GB</td>
<td>$0.08/hour (~$60/month)</td>
</tr>
<tr>
<td>2</td>
<td>3.5 GB</td>
<td>489 GB</td>
<td>$0.16/hour (~$119/month)</td>
</tr>
<tr>
<td>4</td>
<td>7 GB</td>
<td>999 GB</td>
<td>$0.32/hour (~$238/month)</td>
</tr>
<tr>
<td>8</td>
<td>14 GB</td>
<td>2,039 GB</td>
<td>$0.64/hour (~$476/month)</td>
</tr>
</tbody>
</table>

[https://azure.microsoft.com/en-us/pricing/details/cloud-services/]
To Cloud Or Not To Cloud?
Musings On Costs and Viability

- **[Chen, Sion 2011]**
 - Home users (H), Small/Mid-size/Large Enterprises (S,M,L)

![Graph showing savings with different number of servers](image)

- Savings = Cycles \times (Cost_{Local} - Cost_{Cloud}) - DataTransfer
Contents

• Outsourcing
• Verifiable computing
• Certificates for Dense Matrices
• Certificates for Sparse Matrices
Contents

- Outsourcing

- Verifiable computing
 - Clouds offer no guarantee
 - Interactive certificates
 - Public/private verification
 - Probabilistic verification

- Certificates for Dense Matrices

- Certificates for Sparse Matrices
10. Disclaimers: **amazon elastic compute cloud**

- THE SERVICE OFFERINGS ARE PROVIDED “AS IS.”

WE AND OUR AFFILIATES AND LICENSORS MAKE NO [...] WARRANTY THAT THE SERVICE OFFERINGS OR THIRD PARTY CONTENT WILL BE UNINTERRUPTED, ERROR FREE OR FREE OF HARMFUL COMPONENTS,

OR THAT ANY CONTENT, INCLUDING YOUR CONTENT OR THE THIRD PARTY CONTENT, WILL BE SECURE OR NOT OTHERWISE LOST OR DAMAGED.
https://cloud.google.com/terms/

- **12. Disclaimer: Google Compute Engine**
- NEITHER GOOGLE NOR ITS SUPPLIERS, WARRANTS THAT THE OPERATION OF THE SOFTWARE OR THE SERVICES WILL BE ERROR-FREE OR UNINTERRUPTED.
- NEITHER THE SOFTWARE NOR THE SERVICES ARE DESIGNED, MANUFACTURED, OR INTENDED FOR HIGH RISK ACTIVITIES.
Privately Verifiable (outsourced) computation

- **Client (Verifier, Victor)** sends
 - a function F and an input x to the server

- **The Server (Prover, Peggy) returns**
 - $y = F(x)$ and Π, a proof that y is correct

- **Verifying Π, should take less time than computing $F(x)$**
Goals of verifiable computation

- Provide **user** with guarantee of correctness without requiring to perform full computation
 - Ideally not much more than reading input/output

- Minimize extra effort required for **cloud** to provide correctness guarantee
 - Ideally not much more than just solve the problem

- Achieve protocols:
 - **Secure** against malicious clouds
 - **Lightweight** in benign settings
To Cloud Or Not To Cloud?
Viability of verifiability

- [Chen, Sion 2011]
 \[\text{Savings} = \text{Cycles} \times (\text{Cost}_{\text{Local}} - \text{Cost}_{\text{Cloud}}) - \text{DataTransfer} \]

- **Verifiability**
 \[\text{Cycles} \times \text{Cost}_{\text{Local}} \geq \text{Cycles}_{\text{Verifier}} \times \text{Cost}_{\text{Local}} + \text{Cycles}_{\text{Prover}} \times \text{Cost}_{\text{Cloud}} + \text{DataTransfer} \]
Approaches

1. Strong assumptions on the cloud
 – Replication: majority of responses have to be correct
 – Trusted hardware

2. Minimal assumptions
 – Interactive proofs:
 • Generic approaches certifying the algorithm (if in NC) [Goldwasser et al.’08 … Thaler et al.’13]
 • Ad-hoc approaches certifying the result
 – Amortized systems (homomorphic cryptography) [Gentry et al.’13]

3. Using 2 or more clouds
 – Refereed games: 1 cloud has to be honest
 – Multi-prover interactive proofs: non-communicating clouds
Private verifiability in interactive proofs

- Prover P, Peggy
- Verifier V, Victor

Peggy solves problem, tells Victor the answer
- Peggy and Victor have a conversation
- Peggy’s goal: convince Victor of the correctness of her answer

Requirements
1. Completeness: an honest P can convince V to accept
2. Soundness: V will catch lying P with high probability
 - Secure even if P is computationally unbounded
A framework for generic verifications

Framework in which a verifier can check that, for a computation p and desired input x, the prover’s purported output y is correct. Step 1: The verifier and prover compile p, which is expressed in a high-level language (for example, C) into a Boolean circuit, C. Step 2: the prover executes the computation, obtaining a transcript for the execution of C on x. Step 3: the prover encodes the transcript, to make it suitable for efficient querying by the verifier. Step 4: the verifier probabilistically queries the encoded transcript; the structure of this step varies among the protocols (for example, in some of the works, explicit queries are established before the protocol begins, and this step requires sending only the prover’s responses).

[Walfish-Blumberg CACM2015]
A framework for generic verifications

[Walsh-Blumberg CACM2015]
Interactive protocol for problems in NC

[Goldwasser, Kalai, Rothblum 2008]

- Construction based on Prob. Checkable Proofs (PCP)
- \(\log \)-space uniform Boolean circuits \(C_N \) with \(N \) inputs
 - Prover
 - Compresses levels of the evaluated circuit by a linear form
 - Complexity: \(\text{size}(C_N)^O(1) \) (sometimes \(O(\text{size}(C_N)) \) [Thaler 2012])
 - Verifier
 - performs a single Boolean zero-sum check on the levels
 - Complexity: \((N + \text{depth}(C_N)) \cdot \log(N + \text{size}(C_N))^O(1) \)

- Our ad-hoc certificates are instead
 - Independent of the computation \(\Rightarrow \) expose bugs in \(C_N \)
 - Optimal prover complexity: \(\text{best}(N) + o(\text{best}(N)) \)
 - Essentially optimal verifier complexity: \(N^{1+o(1)} \)
Public/Private verifiability

- Private verifiability
 - **Client** only has to be convinced
 - Through the conversation

- Public verifiability
 - Publication of the conversation is not sufficient
 - 🙅‍♂️ **Server** and **Client** could be in cahoots

 🚹 Must convince also external, independent, a posteriori, **verifiers**

- In some cases, automatic transform private → public
 - *[Fiat-Shamir 1986]*
 - △ Requires **cryptographic hardness assumptions**
Public verifiability: Sparse matrix GL7d19

- [Elbaz-Vincent, Gangl, Soulé 2005]
 - K-theory conjectures ⇔ ranks of boundary matrices

- GL7d19: \(1911130 \times 1955309\) matrix
 - 1050 CPU days: rank is 1033568

⚠️ Computed once in 2010 with LinBox ...
😊 With a Monte-Carlo randomized algorithm ...

⇒ ... do you believe that this rank is correct?

⇒ We construct an easily checkable certificate (public verifiability)
Verification of linear system solving (LINSYS)

- Publicly & deterministically verifiable Victor ask for the solution to $A \cdot x = b$
 - Peggy answers with the vector x
 - Anybody can check whether $Ax = b$

- Computation costs $O(n^3)$ (or $O(n^\omega)$, with [...LeGall’14])

- Communication is $O(n)$

- Verification costs $O(n^2)$
Probabilistic verification

[Zippel-Schwarz 1979]
- 2 polynomials \(f, g \) with \(d^o(f) \leq d^o(g) \leq n \)
 - Check equality of \(f \) and \(g \)?
 - \((g-f) \) has at most \(n \) roots
 - Randomly select \(\lambda \in S \)
 - If \(g \neq f \) then \(P(g(\lambda)-f(\lambda) = 0) < 1-n/|S| \)

[Freivalds 1979]
- 3 matrices \(A, B, C \) of dimensions \(m \times k, k \times n, m \times n \)
 - Check equality of \(AB \) and \(C \)?
 - Randomly select \(v \in \mathbb{F}^n \)
 - If \(AB \neq C \) then \(P(A(Bv)-Cv = 0) < 1-1/|\mathbb{F}| \)
Verifiability in practice?

<table>
<thead>
<tr>
<th>4096x4096</th>
<th>MATMUL</th>
<th>MATMUL</th>
<th>LINSYS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>[Thaler 2012]</td>
<td>[FFlas-FFpack]</td>
<td>[FFlas-Ffpack]</td>
</tr>
<tr>
<td>Server time</td>
<td>364.61s</td>
<td>5.01s</td>
<td>4.08s</td>
</tr>
<tr>
<td>+certificate overhead</td>
<td>0.49s</td>
<td>0.00s</td>
<td>0.00s</td>
</tr>
<tr>
<td>Client time</td>
<td>9.86s</td>
<td>[Freivalds] 0.05s</td>
<td>[Freivalds] 0.02s</td>
</tr>
</tbody>
</table>

• **Goldwasser et al.:** linear time verifiers do exist
 🌟 Faster generic approach to date ...
 😞 Prover/Verifier time prohibitive, even with model restrictions

• **Ad-hoc approach:**
 ⚡️ Reduce to MATMUL/LINSOLVE ...
Contents

• Outsourcing

• Verifiable computing

• Certificates for Dense Matrices
 – Rank
 – Reductions
 – Hilbert, Artin, Global optimization
 – CHARPOLY_2

• Certificates for Sparse Matrices
Certifying the rank of dense matrices over a field

- à la [Rūsiņš Freivalds 1979]
 - **Prover:** exhibits P, L, U, Q
 - complexity $2/3 \ n^3$ (or $O(n^{\omega})$)
 - **Verifier:** Probabilistic check that $A == PLUQ$
 - Check permutation and triangular matrices
 - Check rank of U in linear time
 - Random projection vector v
 - check $A \cdot v - P \cdot (L \cdot (U \cdot (Q \cdot v))) == 0$

😊 Overall **Verifier** Monte-Carlo complexity: $O(n^2)$
Non-singularity certificate of dense matrices over \mathbb{Z}

- à la [Rūsiņš Freivalds 1979]
 - Prover
 - Exhibits P, L, U, Q; all invertible
 - Exhibits smallish prime p
 - Verifier
 - Random vector v
 - checks $A \cdot v - P \cdot (L \cdot (U \cdot (Q \cdot v))) \equiv 0 \mod p$

😊 Overall verifier Monte-Carlo bit complexity $n^{2+o(1)}$

⚠️ Rank of singular matrix?
 ⬛ Prime p is chosen by Peggy,
 ⬛ Victor does not know whether p preserves the rank or not ...
Interactive

RANK certificate of dense matrices over \(\mathbb{Z} \)

1. **Verifier**
 - Randomly chooses smallish prime \(p \)

2. **Prover**
 - Exhibits \(P, L, U, Q \) s.t. \(\text{rank}(A) = \text{rank}(U) \mod p \)

3. **Verifier**
 - Random \(v \) and \(A \cdot v - P \cdot (L \cdot (U \cdot (Q \cdot v))) \equiv 0 \mod p \)

😊 Prover cannot choose a bad prime and time is optimal
😊 Verifier time is essentially optimal (better constant factor)

⚠️ **Certificate is not checkable a posteriori anymore**

<table>
<thead>
<tr>
<th>Bit complexity</th>
<th>Prover</th>
<th>Communications</th>
<th>Verifier</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{RANK, DET})</td>
<td>Best known (n^{\omega + o(1)})</td>
<td>(n^{2 + o(1)})</td>
<td>(n^{2 + o(1)})</td>
</tr>
</tbody>
</table>
Fiat-Shamir derandomization
(random oracle model)
Rank certificate of dense matrices over \mathbb{Z}

1. **Prover**
 - Computes $p = \text{NextPrime} (\text{CryptographicHash}(A))$
 - Exhibits P, L, U, Q s.t. $\text{rank}(A) = \text{rank}(U) \mod p$

2. **Verifier**
 - Checks $p = \text{NextPrime} (\text{CryptographicHash}(A))$
 - Random v and $A \cdot v - P \cdot (L \cdot (U \cdot (Q \cdot v))) \equiv 0 \mod p$

😊 **Certificate is now checkable a posteriori**

<table>
<thead>
<tr>
<th>Bit complexity</th>
<th>Prover</th>
<th>Communications</th>
<th>Verifier</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rank, Det</td>
<td>Best known $n^{\omega+o(1)}$</td>
<td>$n^{2+o(1)}$</td>
<td>$n^{2+o(1)}$</td>
</tr>
</tbody>
</table>
Ad-hoc certificates

- "Mathematics is the art of reducing any problem to linear algebra". --- William Stein

- [Kaltofen, Nehrig, Saunders 2011]
 - Reductions to \textsc{MatMul}
 - Prover
 - Sends all intermediate \textsc{MatMul}
 - Verifier reruns algorithm
 - [Freivalds] check of intermediate \textsc{MatMul}

⚠️ Like Verifier has an n^2 \textsc{MatMul}

![Diagram showing communication between Prover and Verifier with calculations C1=A1B1, C2=A2B2, and C3=A3B3.]
Artin’s solution to Hilbert 17th Problem

• Exact certification of global optimality
 – Prove: polynomial inequality $\forall \xi_1, \ldots, \xi_n \quad f(\xi_1, \ldots, \xi_n) \geq g(\xi_1, \ldots, \xi_n)$?
 – via SOS: $\exists u_i, v_j \in \mathbb{R}[x_1, \ldots, x_n], \quad (f-g) = (\sum_{i=1}^k u_i^2)/(\sum_{j=1}^m v_j^2)$
 – $\exists \mu, \nu \in \mathbb{R}[x_1, \ldots, x_n],$

 $$(f-g) \cdot \left(\mu(x_1, \ldots, x_n)^T W_2 \mu(x_1, \ldots, x_n) \right) = \left(\nu(x_1, \ldots, x_n)^T W_1 \nu(x_1, \ldots, x_n) \right)$$

 – $W_1, W_2 \neq 0 \in \mathbb{S} \mathbb{Z}^{n \times n}$ symmetric positive semi-definite
 – Entries in vectors μ, ν in are precisely terms occurring in u_i, v_j

• Verifier
 – Checks Descartes’ rule of sign on certified CHARPOLYS of W_1, W_2
 – Checks remultiplication of u_i, v_j is $(f-g)$
CHARPoly?

- **[Kaltofen-Villard’04]** integer characteristic polynomial
 - Best bit complexity bound exponent: $\omega + (1 - \zeta)/(\omega^2 - (2 + \zeta)\omega + 2)$
 - $\omega=2.373, \zeta=0.303$: CHARPoly exponent is 2.695
 - $\omega=3, \zeta=0$: CHARPoly exponent is 3.2
 - $\omega=2, \zeta=0$: CHARPoly exponent is 2.5

\Rightarrow **[KNS’11]** CHARPoly certificate verification in $n^{2.5+o(1)}$

<table>
<thead>
<tr>
<th>Bit complexity</th>
<th>Prover</th>
<th>Communications</th>
<th>Verifier</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHARPoly [KV]</td>
<td>$n^{\omega+(1-\zeta)/(\cdots)}$</td>
<td>$n^{2.5+o(1)}$</td>
<td>$n^{2.5+o(1)}$</td>
</tr>
<tr>
<td>CHARPoly [KNS]</td>
<td>$n^{\omega+1+o(1)}$</td>
<td>$n^{3+o(1)}$</td>
<td>$n^{2+o(1)}$</td>
</tr>
</tbody>
</table>
Reducing **CHARPOLY verifier** to interactive **DET verifier**

<table>
<thead>
<tr>
<th>Peggy</th>
<th>Victor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input</td>
<td>$A \in \mathbb{Z}^{n \times n}$</td>
</tr>
<tr>
<td>Commitment $g \in \mathbb{Z}[X] = \text{charpoly}_A$</td>
<td>1: $g(X)$ → $\text{degree}(g) \overset{?}{=} n$</td>
</tr>
<tr>
<td>Challenge $\lambda \in \mathbb{Z}$</td>
<td>2: λ</td>
</tr>
<tr>
<td>Response $\delta \in \mathbb{Z} = \text{det}((\lambda I - A))$</td>
<td>3: δ → $\delta \overset{?}{=} g(\lambda)$</td>
</tr>
<tr>
<td>$C_{\text{Det}} : \text{Cert}(\delta = \text{det}((\lambda I - A)))$</td>
<td>4: C_{Det} → $\delta \overset{?}{=} \text{det}((\lambda I - A))$</td>
</tr>
</tbody>
</table>

[D., Kaltofen 2014]

<table>
<thead>
<tr>
<th>Bit complexity</th>
<th>Prover</th>
<th>Communications</th>
<th>Verifier</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHARPOLY</td>
<td>$n^{\omega + (1 - \zeta)/(\ldots)}$</td>
<td>$n^{2 + o(1)}$</td>
<td>$n^{2 + o(1)}$</td>
</tr>
</tbody>
</table>
Derandomized \texttt{CHARPOLY} verifier reduced to \texttt{DET} verifier

<table>
<thead>
<tr>
<th>Peggy</th>
<th>$A \in \mathbb{Z}^{n \times n}$</th>
<th>Victor</th>
</tr>
</thead>
<tbody>
<tr>
<td>$g \in \mathbb{Z}[X] = \text{charpoly}_A$</td>
<td>$g(X)$</td>
<td>λ</td>
</tr>
<tr>
<td>$\lambda = \text{HASH}(A, g)$</td>
<td>λ</td>
<td>δ</td>
</tr>
<tr>
<td>$\delta \in \mathbb{Z} = \det(\lambda I - A)$</td>
<td>$C_{\text{Det}}: \text{Cert} (\delta = \det(\lambda I - A))$</td>
<td>$\deg(g) \overset{?}{=} n$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bit complexity</th>
<th>Prover</th>
<th>Communications</th>
<th>Verifier</th>
</tr>
</thead>
<tbody>
<tr>
<td>\texttt{CHARPOLY}</td>
<td>$n^{\omega+(1-\xi)/(\ldots)}$</td>
<td>$n^{2+o(1)}$</td>
<td>$n^{2+o(1)}$</td>
</tr>
</tbody>
</table>
Contents

• Outsourcing

• Verifiable computing

• Certificates for Dense Matrices

• Certificates for Sparse Matrices
 – \texttt{RANK}
 – \texttt{DETERMINANT}
 – \texttt{MINPOLY, CHARPOLY, ...}
Sparse Matrices

- Matrix factorization are not viable anymore
 - Ex: P, L, U, Q

- Instead, matrix-vector product only is allowed
 - Blackbox model: 1 m-v costs μ operations
Linear certificate for non-singularity of sparse matrices over \mathbb{F}

μ nonzero

1: non-singular

2: b

$b \in \mathbb{F}^n$

3: v

$v \in \mathbb{F}^n$

$Av \not= b$

• Soundness: suppose A is singular, then

<table>
<thead>
<tr>
<th>Sparse NonSing.</th>
<th>Prover</th>
<th>Communications</th>
<th>Verifier</th>
</tr>
</thead>
<tbody>
<tr>
<td>Best known</td>
<td>$\mu+2n$</td>
<td>$\mu+n$</td>
<td></td>
</tr>
</tbody>
</table>
Breaking random oracle and integer factorization

- Fiat-Shamir heuristic with public hash function
 - **Prover**
 - Compute $b = \text{Hash}(A) = \text{Blum-Blum-Shub}_N(A)$
 - Solve $Av = b$, return v
 - **Verifier**
 - Compute $b = \text{Hash}(A) = \text{Blum-Blum-Shub}_N(A)$
 - Check $Av \neq b$

- If the matrix is singular, to break certificate
 - **Prover** need to predict first entry of $P^{-1}b$ is 0
 - **She** can thus predict bits of $b = \text{Blum-Blum-Shub}_N(A)$
 - **She** can thus factor N ...
Interactive certified upper bound to the rank

\[A \in \mathbb{F}^{m \times n} \]

Peggy

Victor

Input

\[A \in \mathbb{F}^{m \times n} \]

Commitment

\[\text{rank}(A) \leq r < \min\{m, n\} \]

1: \(r \)

Challenge

2: \(U, V \)

\[U \in \mathbb{B}^{m \times m}_S, \quad V \in \mathbb{B}^{n \times n}_S, \quad S \subseteq \mathbb{F} \]

Response

\[w \in \mathbb{F}^{r+1} \neq 0 \]

3: \(w \)

\[w \neq 0 \]

\[[I_{r+1}|0] UAV \begin{bmatrix} I_{r+1} \\ 0 \end{bmatrix} w \neq 0 \]

- Precondition the matrix
 - \(U, V \) structured and fast to apply
 - then UAV has generic rank profile ...
 - ... and \((r+1)\times(r+1)\) zero principal minor
Essentially optimal interactive certificate for the rank of sparse matrices

- **Prover**

 Input: A and U,V s.t. UAV is generic rank profile
 1. Certificate: **Non-singularity of leading** $(U A V)_{r \times r}$
 \[\Rightarrow \text{Solve this } r \times r \text{ system with any right-hand side} \]
 2. Certificate: **Singularity of leading** $(U A V)_{(r+1) \times (r+1)}$
 \[\Rightarrow \text{Produce a } (r+1) \text{ non-zero vector in the nullspace} \]

- **Verifier**

 - 2 matrix-vector products \[2\mu \]
 - 2 products with structured U, V \[n^{1+\omega(1)} \]
 - 2 vector equality tests \[2n \]

[D., Kaltofen 2014]

<table>
<thead>
<tr>
<th>If $\mu=n^{1+\omega(1)}$</th>
<th>Prover</th>
<th>Communications</th>
<th>Verifier</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPARSE RANK</td>
<td>$n^{2+\omega(1)}$</td>
<td>5n</td>
<td>$n^{1+\omega(1)}$</td>
</tr>
</tbody>
</table>
Extension to **Sparse Rank** over \(\mathbb{Z}\)

<table>
<thead>
<tr>
<th>Peggy</th>
<th>(A \in \mathbb{Z}^{m \times n})</th>
<th>Victor</th>
</tr>
</thead>
<tbody>
<tr>
<td>(r = \text{rank}(A))</td>
<td>(1: r)</td>
<td>(p) prime (\mathcal{O}\left((m + n)^{1+\omega(1)}\right))</td>
</tr>
<tr>
<td>(r)</td>
<td>(2: p, b, U, V)</td>
<td>(U \in \mathbb{B}^{m \times m}_S, V \in \mathbb{B}^{n \times n}_S, b \in \mathbb{Z}/p\mathbb{Z}^r)</td>
</tr>
<tr>
<td>rank certif. (\mod p)</td>
<td>(3: v, w)</td>
<td>NonSing & UpperRank (\mod p)</td>
</tr>
<tr>
<td>(Ax \in \mathbb{Z}/p\mathbb{Z}) via ((Ax \in \mathbb{Z})) (\mod p)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>If (\mu = n^{1+\omega(1)})</th>
<th>Prover</th>
<th>Communications</th>
<th>Verifier</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sparse Rank</td>
<td>(n^{2+\omega(1)})</td>
<td>(n^{1+\omega(1)} \cdot \log</td>
<td></td>
</tr>
</tbody>
</table>
Direct Sparse Determinant Certificate

<table>
<thead>
<tr>
<th>Prover</th>
<th>Communications</th>
<th>Verifier</th>
</tr>
</thead>
<tbody>
<tr>
<td>$B = A \Gamma(t,s)$</td>
<td>$t, s \rightarrow$</td>
<td>Checks $t^n + s \neq 0$</td>
</tr>
<tr>
<td>$c^B(\lambda) = \det(\lambda I_n - B)$</td>
<td>$c^B(\lambda) \rightarrow$</td>
<td></td>
</tr>
<tr>
<td>$C = [b_{i,j}]_{1 \leq i,j \leq n-1}$</td>
<td>$c^C(\lambda) \rightarrow$</td>
<td></td>
</tr>
<tr>
<td>$c^C(\lambda) = \det(\lambda I_{n-1} - C)$</td>
<td>$h^B, h^C \rightarrow$</td>
<td>Checks $\text{GCD}(c^B(\lambda), c^C(\lambda)) = 1$ in $\mathbb{F}[\lambda]$ by checking at α</td>
</tr>
<tr>
<td>$h^B, h^C \in \mathbb{F}[\lambda]: h^B c^B + h^C c^C = 1$</td>
<td>$r \leftarrow$</td>
<td>$h^B(\alpha)c^B(\alpha) + h^C(\alpha)c^C(\alpha) = 1$</td>
</tr>
<tr>
<td>$t, s \in \mathbb{F}$ also s.t. $\text{GCD}(c^B(\lambda), c^C(\lambda)) = 1$</td>
<td>$r \in S \subseteq \mathbb{F}$ a random element</td>
<td></td>
</tr>
<tr>
<td>Computes u such that</td>
<td>$u \rightarrow$</td>
<td>Checks $(rI_n - B)u = e^{[n]}$</td>
</tr>
<tr>
<td>$(rI_n - B)u = e^{[n]} = \begin{bmatrix} 0 \ \vdots \ 0 \ 1 \end{bmatrix}$</td>
<td>$u \rightarrow$</td>
<td>$u_c^B(r) = c^C(r)$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Computes $\det(A) = c^B(0)/(t^n + s)$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prover</th>
<th>Communications</th>
<th>Verifier</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPARSE DET</td>
<td>3W(n)</td>
<td>$\mu + 6n$</td>
</tr>
</tbody>
</table>
Family of certificates for SPARSE MINPOLY

[D., Kaltofen, Thomé, Villard 2015]

<table>
<thead>
<tr>
<th>Prover</th>
<th>Communications</th>
<th>Verifier</th>
</tr>
</thead>
<tbody>
<tr>
<td>$W(n) = O(\mu n)$</td>
<td>$O(n\sqrt{\mu})$</td>
<td>$O(n\sqrt{\mu})$</td>
</tr>
<tr>
<td>$W(n) + O(\mu \sqrt{n})$</td>
<td>$O(n\sqrt{n})$</td>
<td>$2\mu + O(n\sqrt{n})$</td>
</tr>
<tr>
<td>$W(n) + O(\mu n^{2/3})$</td>
<td>$O(n^{1+1/3})$</td>
<td>$4\mu + O(n^{1+1/3})$</td>
</tr>
<tr>
<td>$W(n) + o(W(n))$</td>
<td>$O(n^{1+1/\ell})$</td>
<td>$2^{\ell}\mu + O(n^{1+1/\ell})$</td>
</tr>
<tr>
<td>$2W(n)$</td>
<td>$O(n)$</td>
<td>$\mu + O(n)$</td>
</tr>
</tbody>
</table>
Contents

- Outsourcing
- Verifiable computing
- Certificates for Dense Matrices
- Certificates for Sparse Matrices
- Conclusion
REDUCTIONS

- **GLOBAL OPTIMIZATION(Q)**
 - [Artin'27]

- **SUM-OF-SQUARES(Q)**
 - [KNS'11]

- **SIGNATURE(Q)**
 - [Descartes 1627]

- **CHARPOLY(Q)**
 - [DK'14]

- **NORMALFORM(Q)**
 - [KNS'11]

- **NORMALFORM(F) w. change of base**
 - [KNS'11]

- **INVERSE(F)**
 - $A^{-1} \cdot A \equiv I$
 - [Freivalds'79]

- **RANK(Q)**
 - $Rank(U)$

- **RANK(F)**
 - $Rank(U)$

- **PLUQ(F)**
 - $P \cdot L \cdot U \cdot Q \equiv A$
 - [Wiedemann'86]

- **MM(F)**

- **MINPOLY(F)**
 - [Wiedemann'86]

- **KRYLOVSEQ(F)**
 - [DKV'15]

- **LINSYS(F)**
 - $Ax \equiv b$
 - [DKT'15]

- **DET(Q)**
 - $Det(U)$
 - [Wiedemann'86]
 - [DK'14]

- **DET(F)**
 - [Wiedemann'86]
 - [DK'14]
Open problems

- Sparse normal forms
 - Linear time SPARSE verifier for SMITHFORM?
 - normal form certificates in the sparse case?
 - do not compute change of base matrices ...

- Remove cryptographic computational hardness assumption
 - For now, only $n^{1.5+o(1)}$ SPARSE DET verifier
References

• To cloud or not to cloud?: musings on costs and viability. Yao Chen, Radu Sion. *2nd ACM Symposium on Cloud Computing*. No. 29, 2011. DOI>10.1145/2038916.2038945

• Interactive certificate for the verification of Wiedemann’s Krylov sequence: application to the certification of the determinant, the minimal and the characteristic polynomials of sparse matrices. Jean-Guillaume Dumas, Erich Kaltofen, Emmanuel Thomé. 2015, arXiv: cs.SC/1507.01083.