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The present

“A software flaw that may become a security threat . . . ”

invalid memory access (e.g., buffer overflows, dangling pointers),
arithmetic overflow, race conditions, etc.

Still present in current applications and OS kernels:
5000 in 2011, 5200 in 2012, 6700 in 2013 . . . [Symantec]

Multiple consequences:
program crash, malware injection, priviledge escalation, etc.

A business

A market has been established for vulnerabilities
Companies, governments and criminals buy vulnerability
information and accompanying exploits
Up to $250,000 for a single zero - day exploit
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Practice in terms of vulnerability analysis

1 Identification of flaws

dangerous patterns, fuzzing and crashes identification . . .

2 Possibility of exploit (exploitability)

poc elaboration, taint analysis, crash analysis . . .

3 Building an real exploit

hijacking countermeasures (sandboxing, DEP, ASLR) using
well-established techniques and forms of shellcodes

Current practice : fuzzing + manual crash analysis

⇒ Challenges : classification of flaws that are exploitable, false
positive/negative, real exploits (dedicated expertise)
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Example 1

1 void bufCopy(char *dst , char *src)

2 {

3 char *p = dst;

4 while (*src != ’\0’) *p++ = *src++;

5 *p = ’\0’;

6 }

1 void CallbufCopy(char *src)

2 {char dst[4] ;

3 bufCopy(dst , src);

4 }

1 Flaw: buffer overflow if no 0 in the first four characters

2 Poc : control flow hijacking if the return address is erased

3 Weaponized exploit : DEP (→ ROP), ASLR (→ address
leaking, unrandomized library . . . ) Sandboxing (→ own
vulnerability)
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Used Static analysis technics

Static analysis : all traces can be taken into account (or a
significant part of), possibility of symbolic reasoning

Technics we use:

Taint and dependency analysis

impact of inputs, data and control dependencies

Value analysis

Determine set of values including reachable values (abstract
interpretation)

Symbolic execution (or concolic)
Build path predicates and resolve them by SMT solvers.
Example 1 with size(dst)=4 and size(src)=8:
p0 = dst0

and not(*src0=’\0’) and *p0=*src0 and p1=p0+1 and src1=src0+1

and not(*src1=’\0’) and *p1=*src1 and p2=p1+1 and src2=src1+1

and *src2=’\0’and *p2=’\0’

Pathcrawler/Klee: 9 test cases (4+4+1)
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Static analysis and vulnerability detection

Applications for vulnerability detection:

identification of sensible parts of code (sophisticated patterns
involving values)

input generation from symbolic paths (slicing)

generalization of traces (exploitability)

⇒ Exploitability only makes sense at the binary level

Challenges :

Taint and dependency analysis require a value analysis

bitvector representation and adapted memory models

scalability/completeness
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Binary level and dependency

⇒ Taint analysis at the source level:

1 int x, *p, y;

2 x = 3 ;

3 p = &x ;

4 y = *p + 4 ; -- y is untainted

⇒ Taint analysis at the assembly level:

Assembly Value analysis result
/* x=3; */
mov [ebp-4], 3 Mem[ebp-4]=3
lea eax, [ebp-4] eax = ebp-4
/* p = &x ;*/
mov [ebp-8], eax Mem[ebp-8] = ebp-4
mov eax, [ebp-8] eax = Mem[ebp-8]
/* y = *p+4 ; */
mov eax, [eax] eax = Mem[Mem[ebp-8]] = Mem[ebp-4]
add eax, 4 eax = Mem[ebp-4] + 4
mov [ebp-12], eax Mem[ebp-12] = eax = Mem[ebp-4] + 4 = 3 + 4

Mem[ebp-12] is untainted.
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Adapted memory models

Verification:

detection of undefined behaviors

separate regions (stack frames, block allocation, array . . . )

Vulnerability detection:

exploitation of undefined behaviors

memory layout representation (flat memory)

Problems:

value analysis : weak update/ strong update

Symbolic reasoning :

select(store(t, i , v), i) = v
select(store(t, i , v), j) = select(t, j , v) if i 6= j
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Exploitability

⇒ Generalization of a crash adding constraints (PC corruption,
writing a determined portion of memory ...).Example (12 loop
traversals for rewriting the return address):

p0 = dst0 // initialization

and not (*src0=’\0’) and *p0=*src0 and p1=p0+1 and src1=src0+1 // ex. 1

... ...

and not(*src8=’\0’) and *p8=*src8 and p9=p8+1 and src9=src8+1 // ex. 9

and not(*src9=’\0’) and *p9=*src9 and p10=p9+1 and src10=src9+1 // ex. 10

and not(*src10=’\0’) and *p10=*src10 and p11=p10+1 and src11=src10+1 // ex. 11

and not(*src11=’\0’) and *p11=*src11 and p12=p11+1 and src12=src11+1 // ex. 13

and *src8=’A’and *src9=’B’and *src10=’C’ and *src11=’D’ // \@ payload

and *src12=’\0’ and *p12=’\0’

AEG a new domain (Sean Heelan, David Brumley,BinSec).
Challenges:

how to generalize?

memory models between flat models and fine-grained regions

exploitability conditions for other vulnerabilities
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Our approach

⇒ Identifying exploitable paths and building appropriate inputs

Using static analysis in order to slice interesting behaviours

structural patterns and static taint analysis

Using static/dynamic analysis for exploitability condition

Symbolic exploitability conditions and dependency

Using concolic or genetic approach to produce inputs

guided fuzzing

⇒ Buffer overflow : SERE11 (BO pattern), SAW’14
(inter-procedural static taint analysis), ECND10, SECTEST11
(fitness functions and mutations)

⇒ Prototype: IdaPro+REIL

Static analysis for exploitable vulnerability detection 13/43



Outline

1 Context
Vulnerability detection process
Static analysis

2 Use-after-free detection and exploitability
Our approach
Detection
Exploitability
Prototype

3 Conclusion
Projects
Bibliographie

Static analysis for exploitable vulnerability detection 14/43



Outline

1 Context
Vulnerability detection process
Static analysis

2 Use-after-free detection and exploitability
Our approach
Detection
Exploitability
Prototype

3 Conclusion
Projects
Bibliographie

Static analysis for exploitable vulnerability detection 15/43



Use after free : dangling pointer + access

1

2 typedef struct {

3 void (*f)(void);

4 } st;

5

6 void nothing ()

7 {

8 printf("Nothing\n");

9 }

10

11 int main(int argc , char * argv [])

12 {

13 st *p1;

14 char *p2;

15 p1=(st*) malloc(sizeof(st));

16 p1->f=& nothing;

17 free(p1); // p1 freed

18 p2=malloc(strlen(argv [1])); // possible re-allocation

19 strcpy(p2,argv [1]);

20 p1->f(); // Use

21 return 0;

22 }
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Motivations

Motivations

Use-After-Free more and more frequent (CVE-2014-0322
(internet explorer), CVE-2014-1512 (firefox,thunderbird))

Static approach for finding exploitable vulnerabilities
→ an adapted modelling of the heap
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State of art

Specificity of UaF

No easy ”pattern” (like for buffer overflow / string format)

Trigger of several dispatched events (alloc/free/use)

Strongly depends on the allocation/liberation strategy

source level detection tools

Binary code

On binary code, state of the art focused more on dynamic analysis

Fuzzing + custom allocator (AddressSanitizer)

Exploit studied after UaF found (Undangle)

New Microsoft protections for navigators (separated heaps,
safe memory management) (June 2014)
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Proposed approach

Goal : extract subgraphs of CFG leading to exploitable
Use-After-Free

Approach

2 steps :
Step 1 : Detection of Use-After-Free

Value analysis
Characterization of Use-After-Free

Step 2 : Exploitability of Use-After-Free

Determining possible re-allocations
Exploitability condition (ongoing work)

Semi-automatic : choice of allocation strategy properties
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Memory model and VSA

Modelling heap

HE = all possible memory blocks in the heap

Member of HE represented (heapi , sizei ) (simplified in chunki )

HA(pc) (resp. HF (pc)) member of HE allocated (resp. freed)

HA : PC → P(HE )

HF : PC → P(HE )

HA(pc) ∩ HF (pc) = ∅

VSA for detection

Track allocation, free and heap accesses

size of allocation (for exploitability)

One allocation = new chunk
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Transfer functions for heap operations

1: function malloc(pc, size)
2: id := id max ;
3: id max + +;
4: HA := HA← {pc 7→ (HA(pc) ∪ {(baseid , size)})};
5: point alloc := point alloc ← {(baseid , size) 7→ pc};
6: return (baseid , size)
7: end function

1: function Free(pc, (basex , size))
2: HA := HA← {pc 7→ (HA(pc) \ {(basex , size)})};
3: HF := HF ← {pc 7→ (HF (pc) ∪ {(basex , size)})};
4: point free := point free ← {(basex , size) 7→
5: {point free(basex , size) ∪ pc}};
6: end function
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Detection : value analysis

1 typedef struct {

2 void (*f)(void);

3 } st;

4

5 int main(int argc , char * argv [])

6 {

7 st *p1;

8 char *p2;

9 p1=(st*) malloc(sizeof(st));

10 free(p1);

11 p2=malloc(sizeof(int));

12 strcpy(p2,argv [1]);

13 p1->f();

14 return 0;

15 }

Code AbsEnv Heap
9 : p1=(st*) malloc(sizeof(st)) (Init(EBP), -4) 7→ {chunk0},. . .

HA = {chunk0}
HF = ∅

10 : free(p1) (Init(EBP), -4) 7→ {chunk0},. . .
HA = ∅
HF = {chunk0}

11 : p2=malloc(sizeof(int)) (Init(EBP), -4) 7→ {chunk0},
(Init(EBP), -8) 7→ {chunk1}

HA = {chunk1},. . .
HF = {chunk0}
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Detection: characterization of Use-After-Free

AccessHeap

AccessHeap returns all elements of HE that are accessed at pc
Examples with REIL memory transfer instructions:

AccessHeap(LDM ad , , reg) = AbsEnv(ad) ∩ HE .

AccessHeap(STM reg , , ad) = AbsEnv(ad) ∩ HE

Research the use of a freed element of the heap

EnsUaf ={(pc, chunk) | chunk ∈ AccessHeap(pc) ∩ HF (pc)}
Extraction of executions leading to each Use-After-Free: all
reachable nodes including the following paths:

pcentry → pcalloc

pcalloc → pcfree

pcfree → pcuaf
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Example: Use-After-Free detection and extraction
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Exploitability

⇒ We consider a Uaf as exploitable if another pointer point to the
same memory zone (∼ alias unwanted).

Steps

1 Determine paths where new allocations take place between
the free and use locations

2 Determine if some allocations can reallocate the same memory
area: based on a particular allocation strategy (worst case, all
allocations are considered as dangerous)

3 Is the size of new allocations a tainted value? Is the content
modified by a tainted value?

4 How is the AccessHeap used: a read, write or jump patterns?
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1. Extracting paths with re-allocations

Replay allocations between free → use

Allocation order is important for exploitability

Find all ”heap operations paths” (with loop summary)
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2. Replay re-allocations

Reallocate of the same memory area

Simulate an allocator on each ”heap operation path” replaying
VSA

Allocator modelisation (with potentially a new heap model):
Define some general behaviour/property of allocator :

→ P1 : Heap space is divided into blocks. Blocks are classified
according to their size and state (allocated/freed)

→ P2 : A new block can take place into a freed block
→ P3 : A freed block can be split
→ P4 : Two freed blocks can be consolidated
→ ...

Code Heap
9 : p1=(st*) malloc(sizeof(st))

HA = {(heap0, 4)}
HF =<>

10 : free(p1)
HA = ∅
HF =< (heap0, 4) >

11 : p2=malloc(sizeof(int))
HA = {(heap0, 4)}
HF =<>
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3 and 4. Dangerousity: taintness and type of HeapAccess

1

2 typedef struct {

3 void (*f)(void);

4 } st;

5

6 void nothing ()

7 {

8 printf("Nothing\n");

9 }

10

11 int main(int argc , char * argv [])

12 {

13 st *p1;

14 char *p2;

15 p1=(st*) malloc(sizeof(st));

16 p1->f=& nothing;

17 free(p1);

18 p2=malloc(strlen(argv [1])); // size is tainted

19 strcpy(p2,argv [1]); // content of p2 is tainted

20 p1->f(); // Access as a jump

21 return 0;

22 }
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Discussions on the approach

Separating detection / exploitability

Triggering Use-After-Free independent of the allocation
strategy

Programming error, always present
”Cause” of Use-After-Free

Exploitability of Use-After-Free depending on the allocation
strategy

What has happened between the free / use of the item?
” Consequence” of Use-After-Free

Advantage of this approach:

Using ”classic” technique for detecting
Study of exploitability on a subset of possible executions of the
program
For an Use-After-Free detected opportunity to study several
allocation strategies (or worst case)
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Implementation

⇒ Use-After-Free detection step

Characteristic

IDA Pro + BinNavi

Ocaml

VSA

loops are unrolled n times (to be instanciated)

inter-procedural by inlining

parametrable memory model (stack frame)

Validation

Validation of the approach on simple examples

Further study of a CVE

Static analysis for exploitable vulnerability detection 33/43



Relevance of the approach

Real Use-After-Free

ProFTPD : CVE 2011-4130, studied by Vupen

Structures, function pointer, global variables...

Assisted detection (subset of 10 functions).

From 2200 nodes → 460
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Ongoing works

Use of subgraphs and VSA for smart fuzzing

An adapted IR and flow graph construction and memory
model ANR project (BinSec)

Exploitability steps (including impact of exploitability)

Build traces using symbolic exploitability conditions (and
allocation strategy)

Detection of custom allocators

Complexity of Use-After-Free in navigators (several allocation
locations including GC, heap spraying)
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The BinSec project

ANR 2013-2017
CEA-LIST, EADS IW, INRIA Rennes, LORIA, Vupen Security

Engineering of vulnerability analysis

Automatize as much as possible the vulnerability detection step
Formalisation of skills in term of exploitability

Scientific challenges

New vulnerabilities such as Use after Free
Static analysis at the binary level (scalability/accuracy)
Memory models for exploitability and symbolic analyses
Representation of self-modifying code

⇒ An IR: DBA

⇒ An open flat-form with CFG recovery a set of basic analysis
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Another application domain

⇒ Smart card applications: injections of fault impacting the code
logic (data and control flow)

Multi-fault

Embedding fault injection by code mutation

Use of symbolic execution to evaluate the robustness of code

Scalability for Binary level (dependency)

Dependency on memory states

⇒ Lazart: an implementation acting on LLVM IR (ICST’14)

Louis Dureuil’thesis, A starting Project
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