Blind Signatures with flying colors

Olivier Blazy
XLim, Université de Limoges

Feb 2014
(1) General Remarks

(2) Building blocks

(3) Non-Interactive Proofs of Knowledge
(1) General Remarks

(2) Building blocks

(3) Non-Interactive Proofs of Knowledge

(4) Interactive Implicit Proofs
(1) General Remarks
(2) Building blocks
(3) Non-Interactive Proofs of Knowledge
(4) Interactive Implicit Proofs
(1) General Remarks
(2) Building blocks
(3) Non-Interactive Proofs of Knowledge
(4) Interactive Implicit Proofs

(5) Can we do better?

(1) General Remarks
(2) Building blocks
(3) Non-Interactive Proofs of Knowledge
(4) Interactive Implicit Proofs
(5) Can we do better?

Electronic Voting

For dessert, we let people vote
\checkmark Chocolate Cake
\checkmark Cheese Cake
\checkmark Fruit Salad
\checkmark Brussels Sprout
After collection, we count the number of ballots:
Chocolate Cake 123
Cheese Cake 79
Fruit Salad 42
Brussels sprout 1

Authentication

- Only people authorized to vote should be able to vote
- People should be able to vote only once

Anonymity

- Votes and voters should be anonymous

Receipt freeness

Homomorphic Encryption and Signature approach

- The voter generates his vote v.
- The voter encrypts v to the server as c.
- The voter signs c and outputs σ.
- (c, σ) is a ballot unique per voter, and anonymous.
- Counting: granted homomorphic encryption $C=\Pi c$.
- The server decrypts C.

Electronic Cash

Protocol

- Withdrawal: A user get a coin c from the bank
- Spending: A user pays a shop with the coin c
- Deposit: The shop gives the coin c back to the bank

Electronic Coins

Expected properties
\checkmark Unforgeability \rightsquigarrow Coins are signed by the bank
\checkmark No Double-Spending \rightsquigarrow Each coin is unique
\checkmark Anonymity \rightsquigarrow Blind Signature

Definition (Blind Signature)

A blind signature allows a user to get a message m signed by an authority into σ so that the authority even powerful cannot recognize later the pair (m, σ).

RSA-Based Blind Signature

The easiest way for blind signatures, is to blind the message:
To get an FDH-RSA signature on m under RSA public key (n, e),

- The user computes a blind version of the hash value:

$$
M=H(m) \text { and } M^{\prime}=M \cdot r^{e} \bmod n
$$

- The signer signs M^{\prime} into $\sigma^{\prime}=M^{\prime d}$
- The user recovers $\sigma=\sigma^{\prime} / r$
\rightarrow Proven under the One-More RSA Assumption in 2001
\rightarrow Perfectly Blind Signature

Round-Optimal Blind Signature

Fischlin 06

- The user encrypts his message m in c.
- The signer then signs c in σ.
- The user verifies σ.
- He then encrypts σ and c into \mathcal{C}_{σ} and \mathcal{C} and generates a proof π.
- $\pi: \mathcal{C}_{\sigma}$ is an encryption of a signature over the ciphertext c encrypted in \mathcal{C}, and this c is indeed an encryption of m.
- Anyone can then use $\mathcal{C}, \mathcal{C}_{\sigma}, \pi$ to check the validity of the signature.

Vote

- A user should be able to encrypt a ballot.
- He should be able to sign this encryption.
- Receiving this vote, one should be able to randomize for Receipt-Freeness.

E-Cash

- A user should be able to encrypt a token
- The bank should be able to sign it providing Unforgeability
- This signature should now be able to be randomized to provide Anonymity

Our Solution

- Same underlying requirements;
- Advance security notions in both schemes requires to extract some kind of signature on the associated plaintext;
- General Framework for Signature on Randomizable Ciphertexts;
- \rightsquigarrow Revisited Waters, Commutative encryption / signature.
(1) General Remarks
(2) Building blocks
- Bilinear groups aka Pairing-friendly environments
- Commitment / Encryption
- Signatures
- Security hypotheses
(3) Non-Interactive Proofs of Knowledge
(4) Interactive Implicit Proofs
(5) Can we do better?

Asymmetric bilinear structure

$\left(p, \mathbb{G}_{1}, \mathbb{G}_{2}, \mathbb{G}_{T}, e, g_{1}, g_{2}\right)$ bilinear structure:

- $\mathbb{G}_{1}, \mathbb{G}_{2}, \mathbb{G}_{T}$ multiplicative groups of order p
- $p=$ prime integer
- $\left\langle g_{*}\right\rangle=\mathbb{G}_{*}$
- e: $\mathbb{G} \times \mathbb{G} \rightarrow \mathbb{G}_{T}$
- $\left\langle e\left(g_{1}, g_{2}\right)\right\rangle=\mathbb{G}_{T}$
- $e\left(g_{1}^{a}, g_{2}^{b}\right)=e\left(g_{1}, g_{2}\right)^{a b}, a, b \in \mathbb{Z}$
deciding group membership,
- group operations, bilinear map
efficiently computable.

Definition (Encryption Scheme)

$\mathcal{E}=($ Setup, EKeyGen, Encrypt, Decrypt):

- Setup $\left(1^{\mathfrak{K}}\right)$: param;
- EKeyGen(param): public encryption key pk, private decryption key dk;
- Encrypt(pk, m; r): ciphertext c on $m \in \mathcal{M}$ and pk;
- Decrypt(dk, c): decrypts cunder dk.

Indistinguishability:
Given M_{0}, M_{1}, it should be hard to guess which one is encrypted in C.

Definition (ElGamal Encryption)

- $\operatorname{Setup}\left(1^{\mathfrak{K}}\right)$: Generates a multiplicative group (p, \mathbb{G}, g).
- EKeyGen $\mathcal{E}^{(p a r a m)}: \mathrm{dk}=\mu \stackrel{\$}{\leftarrow} \mathbb{Z}_{p}$, and $\mathrm{pk}=\left(X_{1}=g^{\mu}\right)$.
- Encrypt(pk $\left.=X_{1}, M ; \alpha\right)$: For M, and random $\alpha \stackrel{\$}{\leftarrow} \mathbb{Z}_{p}$, $\mathcal{C}=\left(c_{1}=X_{1}^{\alpha}, c_{2}=g^{\alpha} \cdot M\right)$.
- $\operatorname{Decrypt}\left(\mathrm{dk}=(\mu), \mathcal{C}=\left(c_{1}, c_{2}\right)\right):$ Computes $M=c_{2} /\left(c_{1}^{1 / \mu}\right)$.

Randomization
 Random(pk, $\mathcal{C} ; r): \mathcal{C}^{\prime}=\left(c_{1} X_{1}^{r}, c_{2} g^{r}\right)=\left(X_{1}^{\alpha+r}, g^{\alpha+r} \cdot M\right)$

Definition (Commitment Scheme)

$\mathcal{E}=$ (Setup, Commit, Decommit):

- $\operatorname{Setup}\left(1^{\mathfrak{K}}\right)$: param, ck;
- Commit(ck, $m ; r):$ c on the input message $m \in \mathcal{M}$ using $r \stackrel{\$}{\leftarrow} \mathcal{R}$;
- Decommit $(\mathbf{c}, m ; w)$ opens \mathbf{c} and reveals m, together with w that proves the correct opening.

Definition (Signature Scheme)
 $\mathcal{S}=($ Setup, SKeyGen, Sign, Verif):

- Setup $\left(1^{\mathfrak{K}}\right)$: param;
- SKeyGen(param): public verification key vk, private signing key sk;
- $\operatorname{Sign}(\mathrm{sk}, m ; s)$: signature σ on m, under sk;
- Verif(vk, m, σ): checks whether σ is valid on m.

Given q pairs $\left(m_{i}, \sigma_{i}\right)$, it should be hard to output a valid σ on a fresh m.

Definition (Waters Signature)

- Setup $\mathcal{S}\left(1^{\mathfrak{K}}\right)$: Generates $\left(p, \mathbb{G}, \mathbb{G}_{T}, e, g\right)$, an extra h, and $\left(u_{i}\right)$ for the Waters function $\left(\mathcal{F}(m)=u_{0} \prod_{i} u_{i}^{m_{i}}\right)$.
- SKeyGen $_{\mathcal{S}}$ (param): Picks $x \stackrel{\$}{\leftarrow} \mathbb{Z}_{p}$ and outputs sk $=h^{x}$, and $v k=g^{x}$;
- Sign(sk, $m ; s)$: Outputs $\sigma(m)=\left(s k \mathcal{F}(m)^{s}, g^{s}\right)$;
- Verif(vk, $m, \sigma)$: Checks the validity of $\sigma: e\left(g, \sigma_{1}\right) \stackrel{?}{=} e\left(\mathcal{F}(m), \sigma_{2}\right) \cdot e(\mathrm{vk}, h)$

Randomization

$\operatorname{Random}(\sigma ; r): \sigma^{\prime}=\left(\sigma_{1} \mathcal{F}(m)^{r}, \sigma_{2} g^{r}\right)=\left(\operatorname{sk} \mathcal{F}(m)^{r+s}, g^{r+s}\right)$

Definition (DL)

Given $g, h \in \mathbb{G}^{2}$, it is hard to compute α such that $h=g^{\alpha}$.

Definition (CDH)

Given $g, g^{a}, h \in \mathbb{G}^{3}$, it is hard to compute h^{a}.

(2) Building blocks

(3) Non-Interactive Proofs of Knowledge

- Groth Sahai methodology
- Signature on Ciphertexts
- Application to other protocols
- Waters Programmability
(4) Interactive Implicit Proofs
(5) Can we do better?

Groth-Sahai Proof System

- Pairing product equation (PPE): for variables $\mathcal{X}_{1}, \ldots, \mathcal{X}_{m} \in \mathbb{G}_{1}$

$$
(E): \prod_{j=1}^{n} e\left(A_{j}, \mathcal{Y}_{j}\right) \prod_{i=1}^{m} e\left(\mathcal{X}_{i}, B_{i}\right) \prod_{i=1}^{m} \prod_{j=1}^{n} e\left(\mathcal{X}_{i}, \mathcal{Y}_{j}\right)^{\gamma_{i, j}}=t_{T}
$$

determined by $A_{i} \in \mathbb{G}_{1}, B_{i} \in \mathbb{G}_{2}, \gamma_{i, j} \in \mathbb{Z}_{p}$ and $t_{T} \in \mathbb{G}_{T}$.

- Groth-Sahai \rightsquigarrow WI proofs that elements that were committed satisfy PPE

> Setup (\mathbb{G}) : commitment key $\mathbf{c k}$;
> Com $(\mathbf{c k}, X \in \mathbb{G} ; \rho)$: commitment $\overrightarrow{c x}$ to $X ;$
> Prove $\left(\mathbf{c k},\left(X_{i}, \rho_{i}\right)_{i=1, \ldots, n,},(E)\right)$: proof $\phi ;$
> Verify $\left(\mathbf{c k}, \vec{c}_{i},(E), \phi\right)$: checks whether ϕ is valid.

Groth-Sahai Proof System

- Pairing product equation (PPE): for variables $\mathcal{X}_{1}, \ldots, \mathcal{X}_{m} \in \mathbb{G}_{1}$

$$
(E): \prod_{j=1}^{n} e\left(A_{j}, \mathcal{Y}_{j}\right) \prod_{i=1}^{m} e\left(\mathcal{X}_{i}, B_{i}\right) \prod_{i=1}^{m} \prod_{j=1}^{n} e\left(\mathcal{X}_{i}, \mathcal{Y}_{j}\right)^{\gamma_{i, j}}=t_{T}
$$

determined by $A_{i} \in \mathbb{G}_{1}, B_{i} \in \mathbb{G}_{2}, \gamma_{i, j} \in \mathbb{Z}_{p}$ and $t_{T} \in \mathbb{G}_{T}$.

- Groth-Sahai \rightsquigarrow WI proofs that elements that were committed satisfy PPE

Setup (\mathbb{G}) : commitment key ck;
Com(ck, $X \in \mathbb{G} ; \rho)$: commitment $\overrightarrow{c_{X}}$ to X;
Prove $\left(\mathbf{c k},\left(X_{i}, \rho_{i}\right)_{i=1, \ldots, n},(E)\right)$: proof ϕ;
Verify $\left(\mathbf{c k}, \vec{X}_{i},(E), \phi\right)$: checks whether ϕ is valid.
$(E): \prod_{j=1}^{n} e\left(A_{j}, \mathcal{Y}_{J}\right) \prod_{i=1}^{m} e\left(\mathcal{X}_{i}, B_{i}\right) \prod_{i=1}^{m} \prod_{j=1}^{n} e\left(\mathcal{X}_{i}, \mathcal{Y}_{j}\right)^{\gamma_{i, j}}=t_{T}$

Assumption	DLin	SXDH
Variables	3	2
PPE	9	$(4,4)$
Linear	3	2
Verification	$12 n+27$	$5 m+3 n+16$
ACNS 2010: BFI+]	$3 n+6$	$m+2 n+8$

$$
(E): \prod_{j=1}^{n} e\left(A_{j}, \mathcal{Y}_{J}\right) \prod_{i=1}^{m} e\left(\mathcal{X}_{i}, B_{i}\right) \prod_{i=1}^{m} \prod_{j=1}^{n} e\left(\mathcal{X}_{i}, \mathcal{Y}_{j}\right)^{\gamma_{i, j}}=t_{T}
$$

Assumption	DLin	SXDH
Variables	3	2
PPE	9	$(4,4)$
Linear	3	2
Verification	$12 n+27$	$5 m+3 n+16$
ACNS 2010: BFI+]	$3 n+6$	$m+2 n+8$

Properties:

- correctness
- soundness
- witness-indistinguishability
- randomizability Commitments and proofs are publicly randomizable.

$$
(E): \prod_{j=1}^{n} e\left(A_{j}, \mathcal{Y}_{J}\right) \prod_{i=1}^{m} e\left(\mathcal{X}_{i}, B_{i}\right) \prod_{i=1}^{m} \prod_{j=1}^{n} e\left(\mathcal{X}_{i}, \mathcal{Y}_{j}\right)^{\gamma_{i, j}}=t_{T}
$$

Assumption	DLin	SXDH
Variables	3	2
PPE	9	$(4,4)$
Linear	3	2
Verification	$12 n+27$	$5 m+3 n+16$
ACNS 2010: BFI+]	$3 n+6$	$m+2 n+8$

Properties:

- correctness
- soundness
- witness-indistinguishability
- randomizability Commitments and proofs are publicly randomizable.

Commutative properties

Encrypt

To encrypt a message m :

$$
c=\left(\mathrm{pk}^{r}, \mathcal{F}(m) \cdot g^{r}\right)
$$

Commutative properties

Encrypt

To encrypt a message m :

$$
c=\left(\mathrm{pk}^{r}, \mathcal{F}(m) \cdot g^{r}\right)
$$

Sign ○ Encrypt
To sign a valid ciphertext c_{1}, c_{2}, c_{3}, one has simply to produce.

$$
\sigma=\left(c_{1}^{5}, s k \cdot c_{2}^{s}, \mathrm{pk}^{\mathrm{s}}, g^{s}\right)
$$

Commutative properties

Encrypt

To encrypt a message m :

$$
c=\left(\mathrm{pk}^{r}, \mathcal{F}(m) \cdot g^{r}\right)
$$

Sign ○ Encrypt

To sign a valid ciphertext c_{1}, c_{2}, c_{3}, one has simply to produce.

$$
\sigma=\left(c_{1}^{s}, \mathrm{sk} \cdot c_{2}^{5}, \mathrm{pk}^{\mathrm{s}}, g^{\mathrm{s}}\right) .
$$

Decrypt ○ Sign ○ Encrypt

Using dk.

$$
\sigma=\left(\sigma_{2} / \sigma_{1}^{\mathrm{dk}}, \sigma_{4}\right)=\left(\mathrm{sk} \cdot \mathcal{F}(m)^{s}, g^{s}\right) .
$$

Definition (Signature on Ciphertexts)

$\mathcal{S E}=($ Setup, SKeyGen, EKeyGen, Encrypt, Sign, Decrypt, Verif):

- Setup $\left(1^{\mathfrak{K}}\right)$: param $_{e}$, param $_{s}$;
- EKeyGen(parame $)$: pk, dk;
- SKeyGen(params): vk, sk;
- Encrypt(pk, vk, $m ; r$): produces c on $m \in \mathcal{M}$ and $p k ;$
- Sign(sk, pk, c; s): produces σ, on the input c under sk;
- Decrypt(dk, vk, c): decrypts c under dk;
- Verif(vk, pk, $c, \sigma)$: checks whether σ is valid.

Definition (Extractable Randomizable Signature on Ciphertexts)

$\mathcal{S E}=($ Setup, SKeyGen, EKeyGen, Encrypt, Sign, Random, Decrypt, Verif, SigExt):

- Random(vk, pk, $\left.c, \sigma ; r^{\prime}, s^{\prime}\right)$ produces c^{\prime} and σ^{\prime} on c^{\prime}, using additional coins;
- $\operatorname{SigExt}(\mathrm{dk}, \mathrm{vk}, \sigma)$ outputs a signature σ^{*}.

Randomizable Signature on Ciphertexts [PKC 2011: BFPV]

Extractable SRC

E-Voting

[PKC 2011: BFPV]

Blind Signature

[PKC 2011: BFPV]

Partially-Blind Signature

Signer

Partially-Blind Signature

Signer-Friendly Partially Blind Signature [SCN 2012: BPV]

Multi-Source Blind Signatures

Multi-Source Blind Signatures

[SCN 2012: BPV]

Two solutions

Different Generators

- Each captor has a disjoint set of generators for the Waters function
- Enormous public key

Two solutions

Different Generators

- Each captor has a disjoint set of generators for the Waters function
- Enormous public key

Two solutions

Different Generators

- Each captor has a disjoint set of generators for the Waters function
- Enormous public key

A single set of generators

- The captors share the same set of generators
- Waters over a non-binary alphabet?

Two solutions

Different Generators

- Each captor has a disjoint set of generators for the Waters function
- Enormous public key

A single set of generators

- The captors share the same set of generators
- Waters over a non-binary alphabet?

Programmability of Waters over a non-binary alphabet

Definition ((m, n)-programmability)

F is (m, n) programmable if given g, h there is an efficient trapdoor producing a_{X}, b_{X} such that $F(X)=g^{a x} h^{b x}$, and for all X_{i}, Z_{j}, $\operatorname{Pr}\left[a_{X_{1}}=\cdots=a X_{m}=0 \wedge a a_{Z_{1}} \cdot \ldots \cdot a_{Z_{n}} \neq 0\right]$ is not negligible.

(1, q)-Programmability of Waters function

Why do we need it: Unforgeabilty, q signing queries, 1 signature to exploit. \rightsquigarrow Choose independent and uniform elements $\left(a_{i}\right)_{(1, \ldots, \ell)}$ in $\{-1,0,1\}$, and random exponents $\left(b_{i}\right)_{(0, \ldots, \ell)}$, and setting $a_{0}=-1$.
Then $u_{i}=g^{a_{i}} h^{b_{i}}$.
$\mathcal{F}(m)=u_{0} \prod u_{i}^{m_{i}}=g^{\sum_{\delta_{i}} a_{i}} h^{\sum_{\delta_{i}} b_{i}}=g^{a_{m}} h^{b_{m}}$.

Non (2, 1)-programmability
Waters over a non-binary alphabet is not $(2,1)$-programmable.
(1, q)-programmability
Waters over a polynomial alphabet remains $(1, q)$-programmable.

Sum of random walks on polynomial alphabets

Local Central Limit Theorem \rightleftharpoons Lindeberg Feller

- New primitive: Signature on Randomizable Ciphertexts
\checkmark One Round Blind Signature
\checkmark Receipt Free E-Voting
\checkmark Signer-Friendly Blind Signature
\checkmark Multi-Source Blind Signature
[PKC 2011: BFPV] [PKC 2011: BFPV] [PKC 2011: BFPV] [SCN 2012: BPV] [SCN 2012: BPV]

Efficiency

- DLin + CDH: $9 \ell+24$ Group elements.
- SXDH $+\mathrm{CDH}^{+}: 6 \ell+15,6 \ell+7$ Group elements.
(1) General Remarks

(2) Building blocks

(3) Non-Interactive Proofs of Knowledge
(4) Interactive Implicit Proofs

- Motivation
- Smooth Projective Hash Function
- Application
(5) Can we do better?

Certification of Public Keys: (NI)ZKPoK

Certification of a public key

Certification of Public Keys: (NI)ZKPoK

Certification of a public key

Certification of Public Keys: (NI)ZKPoK

Certification of a public key

Certification of Public Keys: (NI)ZKPoK

Certification of a public key

Certification of Public Keys: (NI)ZKPoK

Certification of a public key

π can be forwarded

Certification of Public Keys: SPHF

[ACP09]

A user can ask for the certification of pk, but if he knows the associated sk only:
With a Smooth Projective Hash Function
$\mathcal{L}: p k$ and $C=\mathcal{C}(s k ; r)$ are associated to the same sk

- U sends his pk , and an encryption C of sk;
- A generates the certificate Cert for pk, and sends it, masked by Hash = Hash(hk; (pk, C));
- U computes Hash $=$ ProjHash(hp; (pk, C), r)), and gets Cert.

Certification of Public Keys: SPHF

[ACP09]

A user can ask for the certification of pk, but if he knows the associated sk only:

With a Smooth Projective Hash Function

$\mathcal{L}: p k$ and $C=\mathcal{C}(s k ; r)$ are associated to the same sk

- U sends his pk , and an encryption C of sk;
- A generates the certificate Cert for pk , and sends it, masked by Hash = Hash(hk; (pk, C));
- U computes Hash $=$ ProjHash(hp; (pk, C), r)), and gets Cert.

Implicit proof of knowledge of sk

Smooth Projective Hash Functions

Definition

[CS02,GL03]
Let $\{H\}$ be a family of functions:

- X, domain of these functions
- L, subset (a language) of this domain
such that, for any point x in $L, H(x)$ can be computed by using
- either a secret hashing key hk: $H(x)=\operatorname{Hash}_{L}(h k ; x)$;
- or a public projected key hp: $H^{\prime}(x)=\operatorname{ProjHash}_{L}(h p ; x, w)$

Public mapping $h k \mapsto h p=\operatorname{Proj}^{\prime} G_{L}(h k, x)$

SPHF Properties

For any $x \in X, H(x)=\operatorname{Hash}_{L}($ hk; $x)$
For any $x \in L, H(x)=\operatorname{ProjHash}_{L}(h p ; x, w)$
w witness that $x \in L, h p=\operatorname{ProjKG}_{L}(h k, x)$

For any $x \notin L, H(x)$ and hp are independent

SPHF Properties

For any $x \in X, H(x)=\operatorname{Hash}_{L}($ hk; $x)$
For any $x \in L, H(x)=$ ProjHash $_{L}(h p ; x, w)$
w witness that $x \in L, h p=\operatorname{ProjKG}_{L}(h k, x)$

Smoothness

For any $x \notin L, H(x)$ and hp are independent

SPHF Properties

For any $x \in X, H(x)=\operatorname{Hash}_{L}($ hk; $x)$
For any $x \in L, H(x)=\operatorname{ProjHash}_{L}(h p ; x, w)$
w witness that $x \in L, h p=\operatorname{ProjKG}_{L}(h k, x)$

Smoothness

For any $x \notin L, H(x)$ and hp are independent

Pseudo-Randomness

For any $x \in L, H(x)$ is pseudo-random, without a witness w

SPHF Properties

For any $x \in X, H(x)=\operatorname{Hash}_{L}($ hk; $x)$
For any $x \in L, H(x)=\operatorname{ProjHash}_{L}(h p ; x, w)$
w witness that $x \in L, h p=\operatorname{ProjKG}_{L}(h k, x)$

Smoothness

For any $x \notin L, H(x)$ and hp are independent

Pseudo-Randomness

For any $x \in L, H(x)$ is pseudo-random, without a witness w
The latter property requires L to be a hard-partitioned subset of X.

Certification of Public Keys: SPHF

Certification of a public key

$$
\begin{gathered}
\text { Server } \begin{array}{c}
\text { pk, } C=\mathcal{C}(\mathrm{sk} ; r) \leftarrow \\
h p=\operatorname{ProjKG}(h k, C)
\end{array} \\
P \oplus \operatorname{ProjHash}(h p ;(\mathrm{pk}, C), r)=\text { Cert }
\end{gathered}
$$

Certification of Public Keys: SPHF

Certification of a public key

Server	User$\begin{gathered} \text { pk, } C=\mathcal{C}(\mathrm{sk} ; r) \leftarrow \\ \rightarrow P=\operatorname{Cert} \oplus \operatorname{Hash}(\mathrm{hk} ;(\mathrm{pk}, C)) \\ \mathrm{hp}=\operatorname{ProjKG}(\mathrm{hk}, C) \end{gathered}$	
	$P \oplus \text { ProjHas }$ Implicit proof of knowledge of sk	p; (p

Blind-Signatures
 [TCC 2012: BPV]

Groth Sahai
 $6 \ell+7,6 \ell+5$

Blind-Signatures
 [TCC 2012: BPV]

Groth Sahai $6 \ell+7,6 \ell+5$

SPHF

$5 \ell+6,1$
Languages
BLin: $\{0,1\}$, ELin: $\{\mathcal{C}(\mathcal{C}(\ldots))\}$.

Smooth Projective Hash Functions $\hat{=}$ implicit proofs of knowledge

Smooth Projective Hash Functions $\hat{=}$ implicit proofs of knowledge

Various Applications:

Smooth Projective Hash Functions $\hat{=}$ implicit proofs of knowledge

Various Applications:
\checkmark IND-CCA [CS02]

Smooth Projective Hash Functions $\hat{=}$ implicit proofs of knowledge

Various Applications:
\checkmark IND-CCA [CS02]
\checkmark PAKE [GL03]

Smooth Projective Hash Functions $\hat{=}$ implicit proofs of knowledge

Various Applications:
\checkmark IND-CCA [CS02]
\checkmark PAKE [GL03]
\checkmark Certification of Public Keys [ACP09]

Smooth Projective Hash Functions $\hat{=}$ implicit proofs of knowledge

```
Various Applications:
    \checkmark IND-CCA [CS02]
    \checkmark PAKE [GL03]
\(\checkmark\) Certification of Public Keys [ACP09]
```


Privacy-preserving protocols:

Smooth Projective Hash Functions $\hat{=}$ implicit proofs of knowledge

```
Various Applications:
\(\checkmark\) IND-CCA [CS02]
\(\checkmark\) PAKE [GL03]
\(\checkmark\) Certification of Public Keys [ACP09]
```

Privacy-preserving protocols:
\checkmark Blind signatures
[TCC 2012: BPV]

Smooth Projective Hash Functions $\hat{=}$ implicit proofs of knowledge

```
Various Applications:
\(\checkmark\) IND-CCA [CS02]
\(\checkmark\) PAKE [GL03]
\(\checkmark\) Certification of Public Keys [ACP09]
```

Privacy-preserving protocols:
\checkmark Blind signatures
\checkmark Oblivious Signature-Based Envelope
[TCC 2012: BPV]
[TCC 2012: BPV]

Smooth Projective Hash Functions $\hat{=}$ implicit proofs of knowledge

Various Applications:
\checkmark IND-CCA [CS02]
\checkmark PAKE [GL03]
\checkmark Certification of Public Keys [ACP09]

Privacy-preserving protocols:
\checkmark Blind signatures $[$ TCC 2012: BPV]
$[$ TCC 2012: BPV]
$[\mathrm{PKC} /$ Crypto 2013: BBCPV]

Smooth Projective Hash Functions $\hat{=}$ implicit proofs of knowledge

```
Various Applications:
\(\checkmark\) IND-CCA [CS02]
\(\checkmark\) PAKE [GL03]
\(\checkmark\) Certification of Public Keys [ACP09]
```

Privacy-preserving protocols:
\checkmark Blind signatures
\checkmark Oblivious Signature-Based Envelope
\checkmark (v)-PAKE, LAKE, Secret Handshakes
\checkmark Oblivious Transfer

```
[TCC 2012: BPV]
[TCC 2012: BPV] [PKC/Crypto 2013: BBCPV] [AC 2013: ABBCP]
```

Smooth Projective Hash Functions $\hat{=}$ implicit proofs of knowledge

```
Various Applications:
\(\checkmark\) IND-CCA [CS02]
\(\checkmark\) PAKE [GL03]
\(\checkmark\) Certification of Public Keys [ACP09]
```


Privacy-preserving protocols:

\checkmark Blind signatures
\checkmark Oblivious Signature-Based Envelope
\checkmark (v)-PAKE, LAKE, Secret Handshakes
\checkmark Oblivious Transfer
[TCC 2012: BPV]
[TCC 2012: BPV]
[PKC/Crypto 2013: BBCPV] [AC 2013: ABBCP]
\triangle Many more Round optimal applications?

Groth-Sahai

- Allows to combine efficiently classical building blocks
- Allows several kind of new signatures under standard hypotheses

Smooth Projective Hash Functions

- Can handle more general languages under better hypotheses
- Do not add any extra-rounds in an interactive scenario
- More efficient in the usual cases

Groth-Sahai

- Allows to combine efficiently classical building blocks
- Allows several kind of new signatures under standard hypotheses

Smooth Projective Hash Functions

- Can handle more general languages under better hypotheses
- Do not add any extra-rounds in an interactive scenario
- More efficient in the usual cases

(1) General Remarks

(2) Building blocks

(3) Non-Interactive Proofs of Knowledge

4 Interactive Implicit Proofs
(5) Can we do better?

- The problem
- Very high level idea
- We commit to bitstring, bit by bit
- Can we sign a whole message?
- No, we can not extract a scalar
- We commit to bitstring, bit by bit
- Can we sign a whole message?
- No, we can not extract a scalar
- Can we sign a whole message as a group element?
- We commit to bitstring, bit by bit
- Can we sign a whole message?
- No, we can not extract a scalar
- Can we sign a whole message as a group element?
- Can we do that?
- We commit to bitstring, bit by bit
- Can we sign a whole message?
- No, we can not extract a scalar
- Can we sign a whole message as a group element?
- Can we do that?
- We commit to bitstring, bit by bit
- Can we sign a whole message?
- No, we can not extract a scalar
- Can we sign a whole message as a group element?
- Can we do that?

Structure Preserving Signature

Original Definition: Signatures composed of group elements, whose public keys are group elements and who signed group elements

Classical constructions have limits
Relies on twisted hypothesis
Have a size linear in $\log p$

Structure Preserving Signature

Original Definition: Signatures composed of group elements, whose public keys are group elements and who signed group elements

Limits

Classical constructions have limits ...
Relies on twisted hypothesis
Have a size linear in $\log p$

Solution
 Constant size Structure Preserving Signature $(4,1)$ Standard hypothesis

But...

It is not randomizable So need 34,4 elements for the Blind Signatures ...

Thank you..

