CRYPTOEXPERTS ${ }^{\text {可 }}$

WE INNOVATE TO SECURE YOUR BUSINESS

CHIFFREMENT（COMPLÈTEMENT）HOMOMORPHE： DE LA THÉORIE À LA PRATIQUE

Tancrède Lepoint

CryptoExperts
Séminaire sur la Confiance Numérique－Jeudi 9 Octobre 2014

1. Introduction
1.1 What is Fully Homomorphic Encryption? Use Cases?
1.2 Somewhat Homomorphic Encryption over the Integers
2. Implementations and Cloud Communications
2.1 Pointers to Implementations and Libraries
2.2 Cloud Communication Issues

Outline

1. Introduction

1.1 What is Fully Homomorphic Encryption? Use Cases?
1.2 Somewhat Homomorphic Encryption over the Integers
2. Implementations and Cloud Communications
2.1 Pointers to Implementations and Libraries
2.2 Cloud Communication Issues

Encryption

Encryption

Encryption

One Motivation: Cloud Computing

Program or application on
 connected server(s) rather than locally

Modelization

f is the service provided by the Cloud on your data m_{i}

Confidentiality of Your Data

Confidentiality of your data in the Cloud?

Confidentiality of Your Data

Confidentiality of your data in the Cloud?

- We assume communication with the Cloud is secure \checkmark (e.g. HTTPS)

Confidentiality w.r.t. The Cloud

- For confidentiality, we use encryption

Confidentiality w.r.t. The Cloud

For confidentiality, we use encryption 抆

- Now... limited to storage/retrieval

Confidentiality w.r.t. The Cloud

- For confidentiality, we use encryption
- Now... limited to storage/retrieval
- This is not even what Dropbox/Google Drive/Microsoft OneDrive/Amazon S2/iCloud Drive/etc. are doing
- Allow access control and sharing, interaction with whole app universe, etc.

Operating on Encrypted Data

[RivestAdlemanDertouzos78]

Going beyond the storage/retrieval of encrypted data by permitting encrypted data to be operated on for interesting operations, in a public fashion?

Operating on Encrypted Data

[RivestAdlemanDertouzos78]

Going beyond the storage/retrieval of encrypted data by permitting encrypted data to be operated on for interesting operations, in a public fashion?

- Additive Homomorphic Encryption:

$$
E=\operatorname{Enc}(a)+\operatorname{Enc}(b) \quad \Rightarrow \quad \operatorname{Dec}(E)=a+b
$$

e.g. Paillier's cryptosystem [Paillier99]

$$
\begin{aligned}
& c=g^{m} \cdot r^{N} \bmod N^{2} \\
& c^{\prime}=g^{m^{\prime}} \cdot r^{N} \bmod N^{2}
\end{aligned} \Rightarrow c \cdot c^{\prime}=g^{m+m^{\prime}} \cdot\left(r \cdot r^{\prime}\right)^{N} \bmod N^{2}
$$

Operating on Encrypted Data

[RivestAdlemanDertouzos78]

Going beyond the storage/retrieval of encrypted data by permitting encrypted data to be operated on for interesting operations, in a public fashion?

- Additive Homomorphic Encryption:

$$
E=\operatorname{Enc}(a)+\operatorname{Enc}(b) \quad \Rightarrow \quad \operatorname{Dec}(E)=a+b
$$

- Multiplicative Homomorphic Encryption:

$$
E=\operatorname{Enc}(a) \times \operatorname{Enc}(b) \quad \Rightarrow \quad \operatorname{Dec}(E)=a \times b
$$

e.g. 'textbook ElGamal'

$$
\begin{aligned}
& c=\left(g^{y}, m \cdot\left(g^{x}\right)^{y}\right) \\
& c^{\prime}=\left(g^{y^{\prime}}, m^{\prime} \cdot\left(g^{x}\right)^{y^{\prime}}\right)
\end{aligned} \Rightarrow c \odot c^{\prime}=\left(g^{y+y^{\prime}},\left(m \cdot m^{\prime}\right) \cdot\left(g^{x}\right)^{y+y^{\prime}}\right)
$$

Operating on Encrypted Data

[RivestAdlemanDertouzos78]

Going beyond the storage/retrieval of encrypted data by permitting encrypted data to be operated on for interesting operations, in a public fashion?

- Additive Homomorphic Encryption:

$$
E=\operatorname{Enc}(a)+\operatorname{Enc}(b) \Rightarrow \operatorname{Dec}(E)=a+b
$$

- Multiplicative Homomorphic Encryption:

$$
E=\operatorname{Enc}(a) \times \operatorname{Enc}(b) \quad \Rightarrow \quad \operatorname{Dec}(E)=a \times b
$$

FULLY Homomorphic Encryption: Additive and Multiplicative on $\{0,1\}$

Fully Homomorphic Encryption

Enable unlimited computation on encrypted data

(w.l.o.g. m_{i} 's are bits and f Boolean circuit)

Towards Fully Homomorphic Encryption

- [RivestAdlemanDertouzos78]: notion of privacy homomorphism
- [GoldwasserMicali84]: XOR of bits
- [ElGamal84]: multiplication $\bmod p$
- [Paillier98]: addition $\bmod N=p q$
- [BonehGohNissim05]: additions and one multiplication $\bmod p$

Towards Fully Homomorphic Encryption

- [RivestAdlemanDertouzos78]: notion of privacy homomorphism
- [GoldwasserMicali84]: XOR of bits
- [ElGamal84]: multiplication $\bmod p$
- [Paillier98]: addition $\bmod N=p q$
- [BonehGohNissim05]: additions and one multiplication $\bmod p$
- [Gentry09]: additions and multiplications mod 2!

Awesome! Can We Use It?

- In theory, plentiful of applications
- Everything can be viewed as a circuit
- Humongous potential
- Solve many problems on privacy

Awesome! Can We Use It?

- In theory, plentiful of applications
- Everything can be viewed as a circuit
- Humongous potential
- Solve many problems on privacy
- In practice... problem because of sequential homomorphic multiplications!
- State-of-the-art in 2011: 30 minutes after each bit-multiplication

Awesome! Can We Use It?

- In theory, plentiful of applications
- Everything can be viewed as a circuit
- Humongous potential
- Solve many problems on privacy
- In practice... problem because of sequential homomorphic multiplications!
- State-of-the-art in 2011: 30 minutes after each bit-multiplication
- State-of-the-art in 2014: not much better... for fully homomorphic encryption

[^0]

(Fully ?) Homomorphic Encryption

Question [NaehrigLauterVaikuntanathan12]:

Do we really need fully homomorphic encryption?

(Fully ?) Homomorphic Encryption

Question [NaehrigLauterVaikuntanathan12]:

Do we really need fully homomorphic encryption?

- Work over bits?
- e.g. computing $\sum_{i=1}^{10} t_{i}$ where t_{i} are 8 -bit values:
- 135 ' \times ' and ' \times depth' $=8$ if working over bits
[FauSirdeyFontaineAguilar-MelchorGogniat13]
- 0 ' x ' if plaintext space is ≥ 2560

(Fully ?) Homomorphic Encryption

Question [NaehrigLauterVaikuntanathan12]:

Do we really need fully homomorphic encryption?

- Work over bits?
- e.g. computing $\sum_{i=1}^{10} t_{i}$ where t_{i} are 8 -bit values:
- 135 ' \times ' and ' \times depth' $=8$ if working over bits
[FauSirdeyFontaineAguilar-MelchorGogniat13]
- 0 ' x ' if plaintext space is ≥ 2560
" "Real World": limited number of multiplications
- Statistics on medical data: mean, variance, linear regression, etc.
- Geolocalization (Euclidean distance, etc.)

Somewhat Homomorphic Encryption

- Somewhat Homomorphic Encryption (SHE): limited number of homomorphic operations
- Know in advance the \times depth of the circuit to be evaluated

SHE is sufficient for many applications, and this is on what we (\& the community) focus on

Somewhat Homomorphic Encryption

－Somewhat Homomorphic Encryption（SHE）：limited number of homomorphic operations
－Know in advance the \times depth of the circuit to be evaluated

SHE is sufficient for many applications， and this is on what we（\＆the community）focus on
－Interestingly enough： $\mathrm{FHE}=($ SHE that evaluates its decryption circuit $)$ ［Gentry09］
－If $c=\operatorname{Enc}(m)$ ，run homomorphically Dec：

$$
c_{\text {result }}=\operatorname{Enc}(\operatorname{Dec}(c))=\operatorname{Enc}(\operatorname{Dec}(\operatorname{Enc}(m)))=\operatorname{Enc}(m)
$$

Use-Cases?

Information and Communications Technologies call for projects (H2020)

Construction of "Resource efficient, real-time, highly secure fully homomorphic cryptography" is a key challenge

- We need to focus on applications driven by real use-cases having small multiplicative depth
- Statistical Computations
- Mean
- Standard deviation
- Genomics (e.g. χ^{2} test: statistical tests)
- Machine learning

Mean

- Cloud want to compute the mean on private values $\left\{x_{1}, \ldots, x_{n}\right\}$

$$
\bar{x}=\left(\sum_{i=1}^{n} x_{i}\right) / n
$$

- SHE encryption scheme Enc (with decryption Dec)

Mean

- Cloud want to compute the mean on private values $\left\{x_{1}, \ldots, x_{n}\right\}$

$$
\bar{x}=\left(\sum_{i=1}^{n} x_{i}\right) / n
$$

- SHE encryption scheme Enc (with decryption Dec)

1. We can assume that n is public, so we only need to compute $\sum_{i=1}^{n} x_{i}$

Mean

- Cloud want to compute the mean on private values $\left\{x_{1}, \ldots, x_{n}\right\}$

$$
\bar{x}=\left(\sum_{i=1}^{n} x_{i}\right) / n
$$

- SHE encryption scheme Enc (with decryption Dec)

1. We can assume that n is public, so we only need to compute $\sum_{i=1}^{n} x_{i}$
2. The cloud has $\operatorname{Enc}\left(x_{1}\right), \ldots, \operatorname{Enc}\left(x_{n}\right)$

Mean

- Cloud want to compute the mean on private values $\left\{x_{1}, \ldots, x_{n}\right\}$

$$
\bar{x}=\left(\sum_{i=1}^{n} x_{i}\right) / n
$$

- SHE encryption scheme Enc (with decryption Dec)

1. We can assume that n is public, so we only need to compute $\sum_{i=1}^{n} x_{i}$
2. The cloud has $\operatorname{Enc}\left(x_{1}\right), \ldots, \operatorname{Enc}\left(x_{n}\right)$
3. The cloud can homomorphically compute and send back to me

$$
X=\operatorname{Enc}\left(x_{1}\right)+\cdots+\operatorname{Enc}\left(x_{n}\right)
$$

Mean

- Cloud want to compute the mean on private values $\left\{x_{1}, \ldots, x_{n}\right\}$

$$
\bar{x}=\left(\sum_{i=1}^{n} x_{i}\right) / n
$$

- SHE encryption scheme Enc (with decryption Dec)

1. We can assume that n is public, so we only need to compute $\sum_{i=1}^{n} x_{i}$
2. The cloud has $\operatorname{Enc}\left(x_{1}\right), \ldots, \operatorname{Enc}\left(x_{n}\right)$
3. The cloud can homomorphically compute and send back to me

$$
X=\operatorname{Enc}\left(x_{1}\right)+\cdots+\operatorname{Enc}\left(x_{n}\right)
$$

4. I can decrypt the result V :

$$
\operatorname{Dec}(X)=x_{1}+\cdots+x_{n}=\sum_{i=1}^{n} x_{i}
$$

Variance

- Cloud want to compute the variance on private values $\left\{x_{1}, \ldots, x_{n}\right\}$

$$
v=\left(\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}\right) / n
$$

- SHE encryption scheme Enc (with decryption Dec)

Variance

- Cloud want to compute the variance on private values $\left\{x_{1}, \ldots, x_{n}\right\}$

$$
v=\left(\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}\right) / n
$$

- SHE encryption scheme Enc (with decryption Dec)

1. We can assume that n is public, so we only need to compute

$$
n^{3} \cdot v=n^{2} \cdot \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}=\sum_{i=1}^{n}\left(n \cdot x_{i}-\sum_{j=1}^{n} x_{j}\right)^{2}
$$

Variance

- Cloud want to compute the variance on private values $\left\{x_{1}, \ldots, x_{n}\right\}$

$$
v=\left(\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}\right) / n
$$

- SHE encryption scheme Enc (with decryption Dec)

1. We can assume that n is public, so we only need to compute

$$
n^{3} \cdot v=n^{2} \cdot \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}=\sum_{i=1}^{n}\left(n \cdot x_{i}-\sum_{j=1}^{n} x_{j}\right)^{2}
$$

2. The cloud has $\operatorname{Enc}\left(x_{1}\right), \ldots, \operatorname{Enc}\left(x_{n}\right)$

Variance

- Cloud want to compute the variance on private values $\left\{x_{1}, \ldots, x_{n}\right\}$

$$
v=\left(\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}\right) / n
$$

- SHE encryption scheme Enc (with decryption Dec)

1. We can assume that n is public, so we only need to compute

$$
n^{3} \cdot v=n^{2} \cdot \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}=\sum_{i=1}^{n}\left(n \cdot x_{i}-\sum_{j=1}^{n} x_{j}\right)^{2}
$$

2. The cloud has $\operatorname{Enc}\left(x_{1}\right), \ldots, \operatorname{Enc}\left(x_{n}\right)$
3. The cloud can homomorphically compute and send back to me

$$
V=\sum_{i=1}^{n}\left(\sum_{j=1}^{n}\left(\operatorname{Enc}\left(x_{i}\right)-\operatorname{Enc}\left(v_{j}\right)\right)\right) \times\left(\sum_{j=1}^{n}\left(\operatorname{Enc}\left(x_{i}\right)-\operatorname{Enc}\left(v_{j}\right)\right)\right)
$$

Variance

- Cloud want to compute the variance on private values $\left\{x_{1}, \ldots, x_{n}\right\}$

$$
v=\left(\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}\right) / n
$$

- SHE encryption scheme Enc (with decryption Dec)

1. We can assume that n is public, so we only need to compute

$$
n^{3} \cdot v=n^{2} \cdot \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}=\sum_{i=1}^{n}\left(n \cdot x_{i}-\sum_{j=1}^{n} x_{j}\right)^{2}
$$

2. The cloud has $\operatorname{Enc}\left(x_{1}\right), \ldots, \operatorname{Enc}\left(x_{n}\right)$
3. The cloud can homomorphically compute and send back to me

$$
V=\sum_{i=1}^{n}\left(\sum_{j=1}^{n}\left(\operatorname{Enc}\left(x_{i}\right)-\operatorname{Enc}\left(v_{j}\right)\right)\right) \times\left(\sum_{j=1}^{n}\left(\operatorname{Enc}\left(x_{i}\right)-\operatorname{Enc}\left(v_{j}\right)\right)\right)
$$

4. I can decrypt the result V and recover $\operatorname{Dec}(V)=n^{3} \cdot v$

Genomics

- Application for genomic data

Private Computation on Encrypted Genomic Data
Lauter, López-Alt, Naehrig, 2014

Global Alliance

A global alliance of government agencies, research institutes, and hospitals wants to pool all their patients' genomic data to make available for research. http://www.broadinstitute.org/files/news/pdfs/GAWhitePaperJune3.pdf

- In the following: Pearson Goodness-of-Fit to test for deviation from Hardy-Weinberg equilibrium

Hardy-Weinberg Equilibrium (HWE)

- Population of $N=N_{A A}+N_{A a}+N_{a a}$ people with genotypes $A A, A a$ or $a a$
- Probabilities

$$
p_{A A}=\frac{N_{A A}}{N} ; p_{A a}=\frac{N_{A a}}{N} \quad ; p_{a a}=\frac{N_{a a}}{N} \quad ; p_{A}=\frac{2 N_{A A}+N_{A a}}{2 N} \quad ; \quad p_{a}=\frac{2 N_{a a}+N_{A a}}{2 N}
$$

Hardy-Weinberg Equilibrium (HWE)

- Population of $N=N_{A A}+N_{A a}+N_{a a}$ people with genotypes $A A, A a$ or $a a$
- Probabilities

$$
p_{A A}=\frac{N_{A A}}{N} ; p_{A a}=\frac{N_{A a}}{N} \quad ; p_{a a}=\frac{N_{a a}}{N} \quad ; p_{A}=\frac{2 N_{A A}+N_{A a}}{2 N} \quad ; \quad p_{a}=\frac{2 N_{a a}+N_{A a}}{2 N}
$$

A gene is said to be in HWE if its allele frequencies are independent

- HWE:

$$
p_{A A}=p_{A}^{2} \quad ; \quad p_{A a}=p_{A} p_{a} \quad ; \quad p_{a a}=p_{a}^{2}
$$

Pearson Goodness-Of-Fit Test: χ^{2} test

- If the alleles are independent (i.e. HWE), then

$$
\mathbb{E}_{A A}=N \cdot p_{A}^{2} \quad ; \quad \mathbb{E}_{A a}=2 N \cdot p_{A} p_{a} \quad ; \quad \mathbb{E}_{a a}=N \cdot p_{a}^{2}
$$

Pearson Goodness-Of-Fit Test: χ^{2} test

- If the alleles are independent (i.e. HWE), then

$$
\mathbb{E}_{A A}=N \cdot p_{A}^{2} \quad ; \quad \mathbb{E}_{A a}=2 N \cdot p_{A} p_{a} \quad ; \quad \mathbb{E}_{a a}=N \cdot p_{a}^{2}
$$

- Compare the X^{2} test-statistic below to the χ^{2}-statistic with 1 degree of freedom

$$
X^{2}=\sum_{i \in\{A A, A a, a a\}} \frac{\left(N_{i}-\mathbb{E}_{i}\right)^{2}}{\mathbb{E}_{i}}
$$

- Can be rewritten as previously so that the multiplicative depth is 2
- Can be done homomorphically in an efficient manner!

Pearson Goodness-Of-Fit Test: χ^{2} test

- If the alleles are independent (i.e. HWE), then

$$
\begin{aligned}
& \mathbb{E}_{A A}=N \cdot p_{A}^{2} ; \quad \mathbb{E}_{A a}=2 N \cdot p_{A} p_{a} ; \quad \mathbb{E}_{a a}=N \cdot p_{a}^{2} \\
& \text { e the } \left.X^{2} \text { test-statiat: } \begin{array}{r}
\text { Rough timing: } \\
1 \text { second for } 1^{\prime} 000 \text { encrypted genotypes of } \\
\underbrace{\mathbb{E}_{i}}_{i \in\{A A, A a, a a\}}
\end{array}\right) \text { gree of }
\end{aligned}
$$

- Can be rewritten as previously so that the multiplicative depth is 2
- Can be done homomorphically in an efficient manner!

Lots of consequences on the privacy, and how this interacts with the European laws.

Questions before the first (conceptually simple) construction?

Simple SHE: DGHV Scheme [vDGHV10]

- Public error-free element: $x_{0}=q_{0} \cdot p$
- Secret key sk=p

Simple SHE: DGHV Scheme [vDGHV10]

- Public error-free element: $x_{0}=q_{0} \cdot p$
- Secret key sk=p
- Ciphertext for $m \in\{0,1\}$:

$$
c=q \cdot p+2 \cdot r+m
$$

where q large random, r small random

Simple SHE: DGHV Scheme [vDGHV10]

- Public error-free element: $x_{0}=q_{0} \cdot p$
- Secret key sk=p
- Ciphertext for $m \in\{0,1\}$:

$$
c=q \cdot p+2 \cdot r+m
$$

where q large random, r small random

- Decryption of c :

$$
m=(c \bmod p) \bmod 2
$$

Homomorphic Properties

- How to Add and Multiply Encrypted Bits:
- Add/Mult two near-multiples of p gives a near-multiple of p
- $c_{1}=q_{1} \cdot p+2 \cdot r_{1}+m_{1}, \quad c_{2}=q_{2} \cdot p+2 \cdot r_{2}+m_{2}$
- $c_{1}+c_{2}=p \cdot\left(q_{1}+q_{2}\right)+\underbrace{2 \cdot\left(r_{1}+r_{2}\right)+m_{1}+m_{2}}_{\bmod 2 \rightarrow m_{1} \mathrm{XOR} m_{2}}$
$-c_{1} \cdot c_{2}=p \cdot\left(c_{2} q_{1}+c_{1} q_{2}-q_{1} q_{2}\right)+\underbrace{2 \cdot\left(2 r_{1} r_{2}+r_{2} m_{1}+r_{1} m_{2}\right)+m_{1} \cdot m_{2}}_{\bmod 2 \rightarrow m_{1} \mathrm{AND} m_{2}}$

Homomorphic Properties

- How to Add and Multiply Encrypted Bits:
- Add/Mult two near-multiples of p gives a near-multiple of p
$-c_{1}=q_{1} \cdot p+2 \cdot r_{1}+m_{1}, \quad c_{2}=q_{2} \cdot p+2 \cdot r_{2}+m_{2}$
$-c_{1}+c_{2}=p \cdot\left(q_{1}+q_{2}\right)+\underbrace{2 \cdot\left(r_{1}+r_{2}\right)+m_{1}+m_{2}}_{\bmod 2 \rightarrow m_{1} \times \operatorname{XOR} m_{2}}$
$-c_{1} \cdot c_{2}=p \cdot\left(c_{2} q_{1}+c_{1} q_{2}-q_{1} q_{2}\right)+\underbrace{2 \cdot\left(2 r_{1} r_{2}+r_{2} m_{1}+r_{1} m_{2}\right)+m_{1} \cdot m_{2}}_{\bmod 2 \rightarrow m_{1} \mathrm{AND} m_{2}}$

Correctness for multiplicative depth of $L: \log _{2} p=\eta \approx 2^{L} \cdot(\rho+1)$

Numerical Example

- $p=541, q_{0}=809 \Rightarrow x_{0}=437669$
- noise size: $\rho=4$

Numerical Example

- $p=541, q_{0}=809 \Rightarrow x_{0}=437669$
- noise size: $\rho=4$

Encryption:

- $c_{1}=737 \cdot 541+2 \cdot 6+1=398730$
- $c_{2}=368 \cdot 541+2 \cdot 9+0=199106$

Numerical Example

- $p=541, q_{0}=809 \Rightarrow x_{0}=437669$
- noise size: $\rho=4$

Encryption:

- $c_{1}=737 \cdot 541+2 \cdot 6+1=398730$
- $c_{2}=368 \cdot 541+2 \cdot 9+0=199106$

Addition and Multiplication:

- $c_{3}=c_{1}+c_{2} \bmod x_{0}=(398730+199106) \bmod 437669=160167$
- $c_{4}=c_{1} \cdot c_{2} \bmod x_{0}=(398730 \cdot 199106) \bmod 437669=317801$

Numerical Example

- $p=541, q_{0}=809 \Rightarrow x_{0}=437669$
- noise size: $\rho=4$

Encryption:

- $c_{1}=737 \cdot 541+2 \cdot 6+1=398730$
- $c_{2}=368 \cdot 541+2 \cdot 9+0=199106$

Addition and Multiplication:

- $c_{3}=c_{1}+c_{2} \bmod x_{0}=(398730+199106) \bmod 437669=160167$
- $c_{4}=c_{1} \cdot c_{2} \bmod x_{0}=(398730 \cdot 199106) \bmod 437669=317801$

Decryption:

- $c_{3} \bmod p=160167 \bmod 541=31=2 \cdot 10+1=2 \cdot 10+(1$ XOR 0$)$
- $c_{4} \bmod p=317801 \bmod 541=234=2 \cdot 117+0=2 \cdot 10+(1$ AND 0$)$

Implementations

- Implementation of bit-encryption scheme: https://github.com/coron/fhe
- Benchmark on a nontrivial, not astronomical circuit: AES

(public homomorphic computations)

Implementations

- Implementation of bit-encryption scheme: https://github.com/coron/fhe
- Benchmark on a nontrivial, not astronomical circuit: AES
- Batch DGHV (with bootstrapping) [CCKLLTY13]

λ	γ	ℓ	Mult	Bootstrapping	AES	Relative time
72	2.9 MB	544	0.68 s	225 s	113 h	768 s
80	-	-	-	-	-	-

Implementations

- Implementation of bit-encryption scheme: https://github.com/coron/fhe
- Benchmark on a nontrivial, not astronomical circuit: AES
- Batch DGHV (with bootstrapping) [CCKLLTY13]

λ	γ	ℓ	Mult	Bootstrapping	AES	Relative time
72	2.9 MB	544	0.68 s	225 s	113 h	768 s
80	-	-	-	-	-	-

- Scale-Invariant DGHV (without bootstrapping) [CLT14]

λ	γ	ℓ	Mult	Convert	AES	Relative time
72	2 MB	569	0.1 s	33 s	3.6 h	23 s
80	4.5 MB	1875	0.3 s	277 s	102 h	195 s

Implementations

- Implementation of bit-encryption scheme: https://github.com/coron/fhe
- Benchmark on a nontrivial, not astronomical circuit: AES
- Batch DGHV (with bootstrapping) [CCKLLTY13]

λ	γ	ℓ	Mult	Bootstrapping	AES	Relative time
72	2.9 MB	544	0.68 s	225 s	113 h	768 s
80	-	-	-	-	-	-

- Scale-Invariant DGHV (without bootstrapping) [CLT14]

λ	γ	ℓ	Mult	Convert	AES	Relative time
72	2 MB	569	0.1 s	33 s	3.6 h	23 s
80	4.5 MB	1875	0.3 s	277 s	102 h	195 s

- Lattice-Based Scheme [GHS12]

λ	Ciphertext size	ℓ	AES	Relative time
80	0.3 MB	720	65 h	300 s

Outline

1. Introduction
1.1 What is Fully Homomorphic Encryption? Use Cases?
1.2 Somewhat Homomorphic Encryption over the Integers

2. Implementations and Cloud Communications

2.1 Pointers to Implementations and Libraries
2.2 Cloud Communication Issues

Some Libraries for C/C++ implementations

- GMP: GNU Multiple Precision Arithmetic Library
https://gmplib.org/
- NTL: A Library for doing Number Theory
http://www. shoup.net/ntl/
- Not thread safe...
- Fork of NTL: newNTL (http://www.prism.uvsq.fr/~gama/newntl.html)
- FLINT: Fast Library for Number Theory
http://www.flintlib.org/
- LOTS of dependencies...
- OpenMP: library for easy parallelization
http://openmp.org/
- Does not work easily with clang yet...

Do It Yourself?

Table: YASHE with parameters $R=\mathbf{Z}[x] /\left(x^{4096}+1\right), q=2^{127}-1, w=2^{32}, t=2^{10}$ on an Intel Core i7-2600 at 3.4 GHz with hyper-threading turned off and over-clocking ('turbo boost') disabled

	KeyGen	Encrypt	Add	Mult	KeySwitch	Decrypt
[LN14] (FLINT)	3.4 s	16 ms	0.7 ms	18 ms	31 ms	15 ms
[BLLN13] (Home-made)	$?$	23 ms	0.020 ms		27 ms	4.3 ms

- Might be interesting: not too many functions to implement
- If $q \equiv 1(\bmod 2 n)$ prime and $n=2^{k}$: very efficient FFT
- More work for general rings $R=\mathbf{Z}[X] /\left(\phi_{d}(X)\right)$ with cyclotomic polynomial ϕ_{d}

Public Implementations of FHE?

Unfortunately, few implementations are available to play with...

- SV [SV10]: http://www.hcrypt.com
- Quite inefficient...
- DGHV [CNT12]: https://github.com/coron/fhe
- In SAGE
- BGV [BGV12]: https://github.com/shaih/HElib
- Uses NTL
- YASHE and FV [LN14]:
https://github.com/tlepoint/homomorphic-simon
- Uses FLINT

Reducing Communication with the Cloud

- Typical high-level FHE use-case

Reducing Communication with the Cloud

- Typical high-level FHE use-case
- ... wait a sec! The ciphertext expansion is HUGE (prohibitive)!
- If m_{i} is a 4 MB image, using previous schemes, the user would have to send around $200 / 300 \mathrm{~GB}$ of encrypted data

Reducing Communication with the Cloud

- Typical high-level FHE use-case
- ... wait a sec! The ciphertext expansion is HUGE (prohibitive)!
- What if we use hybrid encryption? [NaehrigLauterVaikuntanathan12]
- e.g. AES does not have ciphertext expansion

Reducing Communication with the Cloud

(public homomorphic computations)

- Typical high-level FHE use-case
- ... wait a sec! The ciphertext expansion is HUGE (prohibitive)!
- What if we use hybrid encryption? [NaehrigLauterVaikuntanathan12]
- e.g. AES does not have ciphertext expansion
- It works :)
- Network communication from user to cloud essentially optinalypTo Exp

Latency of Homomophic AES

- Latency of homomorphic eval.: time to get the result

Latency of Homomophic AES

(public homomorphic computations)

- Latency of homomorphic eval.: time to get the result
- Latency of homomorphic AES: dozens of hours
- I'm not even considering the function f...

Replacing AES?

- Three implementations published [GentryHaleviSmart12, CheonCoronKimLeeLTibouchiYun13, CoronLTibouchi14]
- Perform ℓ AES in parallel (several plaintexts in one ciphertext)
- Running times: ≈ 100 hours
- Time per AES block: ≤ 5 minutes

Replacing AES?

- Three implementations published [GentryHaleviSmart12, CheonCoronKimLeeLTibouchiYun13, CoronLTibouchi14]
- Perform ℓ AES in parallel (several plaintexts in one ciphertext)
- Running times: ≈ 100 hours
- Time per AES block: ≤ 5 minutes
- AES is not too complicated, but is not a trivial circuit!
- Multiplicative depth of the binary circuit: 40 (4 per S-box)
- Non-linear part: $b \mapsto b^{254}$ in $G F\left(2^{8}\right)$

Replacing AES?

- Three implementations published [GentryHaleviSmart12, CheonCoronKimLeeLTibouchiYun13, CoronLTibouchi14]
- Perform ℓ AES in parallel (several plaintexts in one ciphertext)
- Running times: ≈ 100 hours
- Time per AES block: ≤ 5 minutes
- AES is not too complicated, but is not a trivial circuit!
- Multiplicative depth of the binary circuit: 40 (4 per S-box)
- Non-linear part: $b \mapsto b^{254}$ in $G F\left(2^{8}\right)$

We know the constraints of FHE/SWHE: can we choose something better than AES? (with small multiplicative depth)

Replacing AES?

- Three implementations published [GentryHaleviSmart12, CheonCoronKimLeeLTibouchiYun13, CoronLTibouchi14]
- Perform ℓ AES in parallel (several plaintexts in one ciphertext)
- Running times: ≈ 100 hours
- Time per AES block: ≤ 5 minutes
- AES is not too complicated, but is not a trivial circuit!
- Multiplicative depth of the binary circuit: 40 (4 per S-box)
- Non-linear part: $b \mapsto b^{254}$ in $G F\left(2^{8}\right)$

We know the constraints of FHE/SWHE: can we choose something better than AES? (with small multiplicative depth)

- Resemble some hardware/masking constraints (but is different): reduce the number of multiplications

Lightweight Block Ciphers?

(public homomorphic computations)

Maybe we could consider lightweight block ciphers?

- Independently done for Simon [LNaehrig14] and Prince [DorözShahverdiEisenbarthSunar14]

Lightweight Block Ciphers?

(public homomorphic computations)

Maybe we could consider lightweight block ciphers?

- Independently done for Simon [LNaehrig14] and Prince [DorözShahverdiEisenbarthSunar14]

Benchmarks

- Hard to compare (not same schemes/same computers/same programming languages)

Rough idea:

Scheme	Block Size	Number of cores	Latency
AES	128	4	$30-100 \mathrm{~h}$
Simon	64	4	3 min
Simon	64	1	12 min
Simon	128	4	1 h
Prince	128	1	1 h

- Some parallelization is possible
- AES easily up to 16 cores
- Simon easily up to block size/2 cores
- Prince up to 32 cores

Benchmarks

- Hard to compare (not same schemes/same computers/same programming languages)

Rough idea:

Scheme	Block Size	Number of cores	Latency
AES	128	4	$30-100 \mathrm{~h}$
Simon	PoC Implementation available at Simon		
https://github.com/tlepoint/homomorphic-simon			
Simon	hiter		
Prince	128	1	1 h

- Some parallelization is possible
- AES easily up to 16 cores
- Simon easily up to block size/2 cores
- Prince up to 32 cores

Mainstream Subject \& Lots of Open Questions

- Current best choice: Prince (multiplicative depth of 24)
- The community is working on the subject

Mainstream Subject \& Lots of Open Questions

- Current best choice: Prince (multiplicative depth of 24)
- The community is working on the subject

Lots of open questions

- Do we really need a block cipher? (wrt to PK scheme, RNG?)

Mainstream Subject \& Lots of Open Questions

- Current best choice: Prince (multiplicative depth of 24)
- The community is working on the subject

Lots of open questions

- Do we really need a block cipher? (wrt to PK scheme, RNG?)
- What is the security/attack models? (who attacks? What do we want to avoid?)

Mainstream Subject \& Lots of Open Questions

- Current best choice: Prince (multiplicative depth of 24)
- The community is working on the subject

Lots of open questions

- Do we really need a block cipher? (wrt to PK scheme, RNG?)
- What is the security/attack models? (who attacks? What do we want to avoid?)
- What are the condiditions we want on the block cipher? (e.g. resistance to related key does not seem required?)

Mainstream Subject \& Lots of Open Questions

- Current best choice: Prince (multiplicative depth of 24)
- The community is working on the subject

Lots of open questions

- Do we really need a block cipher? (wrt to PK scheme, RNG?)
- What is the security/attack models? (who attacks? What do we want to avoid?)
- What are the condiditions we want on the block cipher? (e.g. resistance to related key does not seem required?)
- How to exploit FHE constraints? (It is not only the multiplicative depth that is interesting to reduce)

Mainstream Subject \& Lots of Open Questions

- Current best choice: Prince (multiplicative depth of 24)
- The community is working on the subject

Lots of open questions

- Do we really need a block cipher? (wrt to PK scheme, RNG?)
- What is the security/attack models? (who attacks? What do we want to avoid?)
- What are the condiditions we want on the block cipher? (e.g. resistance to related key does not seem required?)
- How to exploit FHE constraints? (It is not only the multiplicative depth that is interesting to reduce)
- Reciprocally, can we design FHE schemes specially adapted to certain schemes/algorithms?

https://www.cryptoexperts.com/tlepoint
CRYPTOEXPERTS ${ }^{\text {吅 }}$

(Sparse) Bibliography
 [Gen09]

[DGHV10]
Fully Homomorphic Encryption using Ideal Lattices
Fully Homomorphic Encryption over the Integers
[BV11]
Fully Homomorphic Encryption from Ring-LWE and Security for Key Dependent Messages
[CMNT11] Fully Homomorphic Encryption over the Integers with Shorter Public Keys
[CNT12] Public Key Compression and Modulus Switching for Fully Homomorphic Encryption over the Integers
E [BGV12]
[FV12]
(Leveled) Fully Homomorphic Encryption without Bootstrapping
Somewhat Practical Fully Homomorphic Encryption
[GHS12]
[LTV12]
Homomorphic Evaluation of the AES Circuit
On-the-fly Multiparty Computation on the Cloud via multikey Fully Homomorphic Encryption
[NLV12]
[BLLN13]
Can Homomorphic Encryption be Practical?
Improved Security for a Ring-Based Fully Homomorphic Encryption Scheme
[LP13] On the Minimal Number of Bootstrappings in Homomorphic Circuits
[CCKLLTY13]
Batch Fully Homomorphic Encryption over the Integers
[GSW13]
Homomorphic Encryption from Learning With Errors: Conceptually-simpler, Asymptotically-faster, Attribute-based
[CLT14]
[LN14]
Scale-Invariant Fully Homomorphic Encryption over the Integers
A Comparison of the Homomorphic Encryption Schemes FV and YASHE
[DSES14]
[BV14]
Toward Practical Homomorphic Evaluation of Block Ciphers using Prince
Lattice-Based FHE as Secure as PKE

[^0]: - (But I heard about exciting new results to come...)

